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Abstract

We compare out-of-sample density expectations constructed from 120 em-

pirical specifications of unconditional and conditional asset pricing models.

We extend the recently developed model confidence set (MCS) approach to

a multivariate setting and use it as a general testing framework to incorpo-

rate investors’ accuracy preferences for different regions of joint asset return

distributions. We find that the performance of unconditional models does

not differ significantly from that of conditional models when investors favor

the central tendency or the right tail of the density but that the uncon-

ditional models outperform the conditional models when investors assess

the left tail as more important. We further investigate model pooling as

an alternative strategy to address model uncertainty. In contrast to recent

studies of asset pricing model pooling, we find that model pooling with a

full set of models is not always optimal. We propose a new trimming scheme

and find significant gains from trimming prior to pooling, and these gains

are most pronounced when investors have a large number of models at their

disposal. We provide both statistical and economic explanations for these

benefits.
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1. Introduction

Modeling the relation between risk and expected return is a fascinating

endeavor with a long history in finance. To date, the question of whether a

particular asset pricing model is literally accurate remains unresolved. As

asset pricing models are, at best, approximations of reality, a more useful

task for empirical researchers is to compare the performance of competing

asset pricing models (Kan and Robotti, 2009). Existing comparison studies

are largely based on asset mean return in-sample fitting. However, at least

two aspects are important for a comparison of asset pricing models to be

ultimately useful for practical applications: the out-of-sample performance

(Ferson, Nallareddy, and Xie, 2013) and the reflection of the investor’s dis-

tributional accuracy preferences, i.e., the preference for the accuracy of

different regions of the asset return distribution (Kadan and Liu, 2014).

Incorporating these two perspectives, we compare the out-of-sample per-

formance of 120 potential empirical model specifications of individual asset

pricing models and three types of asset pricing model pooling in the context

of modeling the joint density of cross-sectional stock returns.

We consider all possible empirical specifications of the conditional and

unconditional forms of 8 asset pricing models and three sets of widely used

instrument variables in prior studies, and we obtain an extensive model set

that includes 120 empirical model specifications. By spanning the model

space, we aim to address the problem involving asset pricing model uncer-

tainty in a problem-based setting in practical applications in which a large

number of models are available to investors. To that end, we first extend the

model confidence set (MCS) approach (Hansen, Lunde, and Nason, 2011)

to fit our multivariate setting in which the joint density of multiple assets
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must be considered. The generosity of the MCS approach also allows us

to weight the accuracies of different regions of the predictive asset return

distribution such that we can mirror investors’ preferences for the distribu-

tional accuracy of the center or tail of the asset return distribution in the

asset pricing model comparison. In contrast to existing model selection or

comparison techniques, the MCS approach acknowledges the limitations of

sample data and employs a set of models rather than a single model.

As the sample data commonly used in this area may not be sufficiently

informative to identify a single dominant model and as the performance of

alternative models also varies over time, model pooling (see Rapach, Strauss,

and Zhou, 2010; O’Doherty, Savin, and Tiwari, 2012, for example) has been

introduced in recent years to address the uncertainty problem arising in

asset pricing models. However, although model comparison or selection risks

eliminating useful information that might be contained in the seemingly

inferior models, model pooling can also perform poorly when the number of

available models is large and contaminating models are included. Because

model pooling in finance remains in its early stages with few applications,

it is beneficial to the field to emphasize that model pooling cannot be used

as a placebo in all conditions to alleviate asset pricing model uncertainty

and that pooling all models without concern for the models at hand can be

detrimental to investment practices. We propose first trimming the models

and then pooling the models using simple equal weights after trimming in

the context of out-of-sample asset pricing when empirical researchers have

a large number of models at their disposal. In addition to the optimal

trimming scheme in the existing literature, we also design a new trimming

scheme using the MCS test in the context of asset pricing model uncertainty.
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Intuitively, it makes sense to eliminate poor models and pool the remaining

models. Our method combining trimming and pooling can be regarded as

a tradeoff between model selection and model pooling to address problems

involving asset pricing model uncertainty, and this approach has practical

value when the model set is large with potentially contaminating models.

Our first main result is that the models selected into the model con-

fidence set vary because of changing preferences for the accuracy in the

tail or central tendency along the expected asset return distribution. Con-

sistent with existing studies (e.g., Ghysels, 1998; Simin, 2008), uncondi-

tional models generally perform better than their conditional counterparts

in terms of numerical comparisons. Previous studies primarily focus on the

mean return point forecast comparison, and we complement these studies by

showing that unconditional asset pricing models perform better even when

investors weigh the central tendency or tail accuracy as more important.

However, these conclusions are largely based on numerical comparisons.

Our study further tests whether unconditional models perform significantly

better than conditional models. In contrast to previous studies, we find

that some conditional models cannot be differentiated from unconditional

models, particularly when we weigh the central tendency or the right tail

as more important. We further show these same findings in two special

cases, the point mean and 5% value-at-risk (VaR) loss forecasts, and find

that some conditional and some unconditional models are selected into the

model confidence set.

This finding provides new insights for the asset pricing literature by

showing that the out-of-sample performance of the conditional asset pric-

ing model is close to and cannot be effectively differentiated from that of
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unconditional models in forming expectations of tail risk. This result com-

plements the findings in prior asset pricing model comparisons. Recent

studies comparing the out-of-sample fit of asset pricing models (e.g., Simin,

2008; Ferson, Nallareddy, and Xie, 2013) primarily focus on the mean point

predictive performance of asset pricing models with mean squared error

(MSE) and pricing error (PE) used as accuracy measures. However, in

real economic applications, investors with different preferences weigh the

accuracy of a particular region of the return distribution differently and

thus arrive at different rankings of asset pricing models. For example, in

risk management, it is critical to examine the tails of the distribution, in

which the right tail is important for short positions in the asset and the left

tail is critical for downside risk management. The new evidence from our

study is of particular interest to this area of study because of the increasing

amount of research documenting that asset returns exhibit features in third

and fourth moments that are inconsistent with a normal distribution (e.g.,

Chang, Christoffersen, and Jacobs, 2013; Kelly and Jiang, 2014; Bollerslev,

Todorov, and Xu, 2015). Hence, the first two moments, the mean and

volatility of asset returns, no longer completely characterize return distri-

butions, and the comparison and evaluation studies of asset pricing models

focusing on the point mean and volatility forecasts are less useful than they

were under conventional Gaussian assumptions (e.g., Amisano and Giaco-

mini, 2007; Kadan and Liu, 2014). The focus on density forecasting and the

incorporation of divergent investor forecasting accuracy preferences distin-

guish our paper from previous asset pricing model comparison studies, and

our study thus has more practical value.

Our second and primary contribution results from introducing trimming
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before asset pricing models are pooled to improve the out-of-sample perfor-

mance of asset pricing models. The pooling approach has long been used in

econometric forecasting to improve the out-of-sample performance of eco-

nomic indicators (see Timmermann, 2006, for a recent review). Finance ap-

plications remain scarce; Rapach, Strauss, and Zhou (2010) and O’Doherty,

Savin, and Tiwari (2012) are recent attempts in the finance literature to

adopt model pooling to improve out-of-sample stock return forecasts. The

model sets considered in these papers are relatively condensed, and thus,

there is some concern that studies including extremely poor models may

actually contaminate the performance of the model pool.2 However, this

consideration is not applicable to real decision making when a large num-

ber of potential models are available, and certain poor models are likely to

be included. Thus, it is more sensible for investors to dispose of potentially

poor models before pooling all models.

In contrast to the common belief in prior studies with pooled asset pric-

ing models, we find that pooling is not always optimal and that trimmed

model pools dominate all other models. When the number of available

models is large, pooling all models may even underperform the single best

model, particularly when extremely poor models are included. Therefore,

we propose the trimming of models prior to pooling. After trimming,

we find no statistically significant differences between equal- and optimal-

weighted model pools. The numerical differences are minor, and trimmed

equal weighting generally performs slightly better than optimal weighting.

This result is consistent with our intuition that the models in the trimmed

2These studies may have applied prior judgment regarding which models to be pooled,
but trimming is not explicitly stated in those papers.

7



model set should perform equally well in statistically meaningful ways if

the trimming method is effective. Hence, we suggest pooling models using

simple equal weights after trimming. We show that trimming before pooling

delivers superior out-of-sample forecasting performance in all cases in the

paper. This method provides both statistically and economically significant

improvement over pooling with full sets of models examined in prior stud-

ies. The result remains the same across different testing assets and across

different evaluation periods. Moreover, our proposed method is easy to im-

plement in practice, and from a practical perspective, it is meaningful to

discard poor models when model spaces are large and extreme models are

potentially incorporated.

In addition to our main contributions to the asset pricing model uncer-

tainty literature, we also contribute to the forecast combination literature

by proposing a new method to trim models, and we provide evidence of the

advantages of trimming in the context of out-of-sample density forecast-

ing of asset pricing models, which involves numerous potential empirical

model specifications. We are the first researchers in the field to specifically

create MCS tests for asset pricing model comparisons. To the best of our

knowledge, we are also the first in this field of study to span empirical asset

pricing model specifications to such a large model set that includes a rela-

tively comprehensive grouping of potential empirical model specifications.

The remainder of this paper is organized as follows. Section 2 describes

the asset pricing models and various model specifications considered in our

study and provides an overview of previous asset pricing model comparison

studies. Section 3 presents the empirical methods utilized in our study and

discusses empirical design issues. Section 4 illustrates the construction of
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the data sample. Section 5 discusses the empirical results, and Section 6

provides statistical and economic interpretations of the empirical results.

Section 7 addresses other empirical design issues and presents the results of

robustness tests, and Section 8 concludes the paper.

2. Asset Pricing Models

The models that we examine are derived from the asset pricing literature.

We begin with the most celebrated asset pricing model, the capital asset

pricing model (CAPM), and proceed to the advancement of Merton’s 1973

intertemporal capital asset pricing model, for example, and the consumption

CAPM (CCAPM) (Breeden, 1979), the Chen, Roll, and Ross 1986 5-factor

model (CCR5) and Jagannathan and Wang’s 1996 conditional version of

the CAPM (JW). We then proceed to the multi-factor models of Fama and

French (1993), Carhart (1997) and Liu (2006), which are motivated by the

empirical failure of the CAPM and return anomalies. These models are

widely used in studies that compare and evaluate asset pricing models (e.g.,

Hodrick and Zhang, 2001; Simin, 2008; Kan and Robotti, 2009; O’Doherty,

Savin, and Tiwari, 2012). Our primary model set thus comprises eight

asset pricing models: (1) the Sharpe (1964)-Lintner (1965)-Mossin (1966)

CAPM; (2) the linear version of the CCAPM; (3) the CCR5; (4) the JW; (5)

the Fama and French (1993) 3-factor pricing model (FF3); (6) the Carhart

(1997) 4-factor model (Carhart4); (7) the Fama and French (2015) 5-factor

pricing model (FF5); and (8) the liquidity-augmented asset pricing model

(LIQ) by Liu (2006).

The general empirical specification for each of these models is a multi-

variate normal linear regression with random regressors (O’Doherty, Savin,
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and Tiwari, 2012)

rt = αt + βtft + εt (2.1)

where rt is an m×1 vector of excess returns at time t for a set of m assets, ft
is a k×1 vector of k factors at time t, and εt is an m vector of disturbances at

time t that is normally independent and identically distributed (IID) with a

mean of 0 and a positive definite variance matrix Σ. The true specification

of the models does not contain an intercept term, i.e., αt = 0.

To include a relatively comprehensive set of asset pricing models, we

consider various empirical variations of the asset pricing models, including

both unconditional and conditional models. We also allow for time-varying

risk premiums and time variations in the intercept and the beta. The various

specifications of equation(2.1) are as follows:

rt = β0ft + εt, (2.2)

rt = α0+ β0ft + εt, (2.3)

rt = α0+ (β0 + β
′

1Zt−1)ft + εt, (2.4)

rt = (α0 + α
′

1Zt−1)+ β0ft + εt, (2.5)

rt = (α0 + α
′

1Zt−1)+ (β0 + β
′

1Zt−1)ft + εt (2.6)

rt = β0(C0 + C
′

1Zt−1) + εt, (2.7)

rt = α0+ β0(C0 + C
′

1Zt−1) + εt, (2.8)

rt = (β0 + β
′

1Zt−1)′(C0 + C
′

1Zt−1) + εt, (2.9)

rt = (α0 + α
′

1Zt−1)+ (β0 + β
′

1Zt−1)′(C0 + C
′

1Zt−1) + εt. (2.10)

where zt−1 is the vector of lagged instruments. Equation 2.2 and 2.3 repre-

sent an unconditional specification of the models with a constant intercept,
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beta and factor risk premium. The remaining equations are conditional

specifications with time variation in the coefficients and/or risk premiums.

These conditional specifications allow us to examine whether time variation

in the intercept, beta and factor risk premiums improves the out-of-sample

fit of the models. Similar specifications can also be found in Simin (2008).

To estimate the specifications (2.4), (2.5) and (2.6) with time variation in

the intercept and/or beta, we use three different sets of instrumental vari-

ables to construct a lagged information set, Zt−1, which is detailed in the

data section. Model specifications (2.7) to (2.10) involve time variation in

the factor risk premium. To avoid perfect multicollinearity in estimating

multi-factor conditional models, we select different instruments from the

six variables to determine the factor risk premium of each distinct pricing

factor.

The modeling freedom with respect to the model form and instrumen-

tal variables lead to a total of 120 empirical model specifications, i.e., 15

specifications for each of the eight asset pricing models, which includes

two unconditional models, nine conditional specifications incorporating time

variation in coefficients (three model forms with three different vectors of in-

struments) and four conditional specifications with time variation in factor

risk premiums. To simplify references to the models in the following sec-

tions, we include notations for each of the 120 specifications in AppendixA

and index the models from 1 to 120.
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3. Empirical Methods

3.1. Constructing a density forecast from the asset pricing models

We illustrate our method to obtain one-step-ahead 3 asset return density

forecasts in this subsection. The objective of a density forecast is to obtain

the forecast of full predictive density of asset returns rather than merely

forecasts that match the observed data in the first or second moments, for

instance. In the setting of cross-sectional asset pricing, obtaining predictive

densities for multiple assets simultaneously is of greater interest in asset al-

location practice. We form the density forecasts entirely in the multivariate

setting.

We implement a Bayesian approach to obtain the predictive density of

rt conditional on the set of factors ft and the information set Zt−1. Assume

that the investor has the standard uninformative prior on B:

p(B,Σ) ∝ |Σ|
m+1

2 . (3.1)

Using similar specifications as in O’Doherty, Savin, and Tiwari (2012), we

let the marginal posterior probability density function (PDF) for Σ follow

an inverse Wishart distribution and the conditional posterior PDF for B

follow a multivariate normal distribution. The expression for the one-step-

ahead conditional predictive density for rt takes the form of the multivariate

3The forecast horizon is another a crucial object in measuring and ranking forecast
accuracy (Diebold and Lopez, 1996). We limit our treatment to the one-step-ahead
forecast to concentrate on our main points and leave investigations of this point for
future studies.
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Student’s t-distribution:

p(rt|Rt−τ,t−1, Ft−τ,t−1, ft, Zt−1)

= v1/2Γ[(v +m)/2]|V |1/2

πm/2Γ(v/2)

× [v + (rt − α̂t − β̂tft)
′
V (rt − α̂t − β̂tft)]−

v+m
2 , (3.2)

where τ is the length of the sample and the subscript t − τ, t − 1 denotes

a sample that extends from time t − τ to t − 1. The ith row of the τ ×m

matrix Rt−τ,t−1 = rt−τ , ..., rt−1 is rt−τ−1+i, the ith row of the τ × (k + 1)

matrix Ft−τ,t−1 is (1, f ′t−τ−1+i), and ft is the vector of 1-step-ahead factor

realizations at time t. V = gvS−1, g = 1 − f
′
t (F

′
F + f

′
tft)−1ft, F =

{ft−τ , ..., ft−1}, and v = τ − (k + 1)− (m− 1).

Notably, our objective here is the one-step-ahead predictive density of

rt conditional on ft rather than a marginal distribution of rt. As shown in

O’Doherty, Savin, and Tiwari (2012), under the assumption that the asset

pricing models share a common prediction model for factor returns, the

marginal distribution of rt can be obtained by integrating out ft from the

joint distribution of rt and ft, which is therefore reduced to a conditional

distribution of rt on ft. Hence, the evaluation of the asset pricing models

does not require the explicit specification of a prediction model for the

factors, and the density in equation (3.2) can actually be used to evaluate

the true out-of-sample predictive performance for a set of competing models.

To assess the performance of alternative density forecasting models and

methods, we use a likelihood-based metric, i.e., the log predictive score

(LPS) function, which is closely related to the Kullback-Leibler distance.
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Denoting the realizations of time series rt as rot , the LPS function of the

joint predictive density of rt is

LS =
T∑
t=2

log[p(rot , f ot |Rt−τ,t−1, Ft−τ,t−1, ft, Zt−1)]. (3.3)

The LPS function is intuitively appealing because it reflects the out-of-

sample prediction performance of a given model throughout while giving

a high score to a model that ex ante assigns a high probability to the

value of the rt that materializes. Therefore, a model that maximizes the

LPS function is equivalent to those that minimize the distance between

the forecast density and the true but unknown density measured by the

Kullback-Leibler information criterion (KLIC).

3.2. Comparing the out-of-sample performance of alternative models

We use the MCS approach to compare alternative asset pricing models

and forecasting methods. Instead of making comparisons solely based on

absolute numbers, we can use an MCS test to make statistical inferences

regarding the significance of differences across models. This method was ini-

tially developed by Hansen, Lunde, and Nason (2011), and we extend the

method to cross-sectional asset pricing model density forecast comparison

and incorporate various preferences for the accuracy of particular regions

of the return distribution. This method has two advantages. First, by ac-

knowledging possible limitations in the data because the number of models

chosen containing the best model will depend on how informative the data

are, the proposed method selects a model set containing the best-performing

models at the confidence level of α, with α representing the size of the MCS

test rather than selecting a single-best model. Therefore, the MCS approach
14



features the properties of both model selection and model trimming. Sec-

ond, as the ranking of density forecasts is rarely independent of individual

preferences (Diebold, Gunther, and Tay, 1998), particularly for various fi-

nancial applications, such as portfolio selection, risk management, utility or

objective functions varying across decision makers, the loss functions must

be generated specifically for different preferences for the accuracies of dis-

tributional forecasts. The MCS is a flexible method that can be used for

arbitrary loss functions. Therefore, we can use a weighting function such as

the functions proposed by Amisano and Giacomini (2007) to assign weights

to different parts of the distribution. For example, using the normal density

function will give more weight to the center of the distribution, and one mi-

nus the normal cumulative distribution function (CDF) will allocate more

weight to the left tail of the distribution, whereas using the normal CDF

will result in more weight given to the right tail. The forecasting accuracy

of tails is critical to risk management. In this subsection, we first describe

the general testing framework and then use a weighting function to assign

weights to the forecasting losses of the different regions of asset return dis-

tributions the enable the incorporation of investor distributional accuracy

preferences. We further provide two special cases of different accuracy pref-

erences: the point mean return and VaR forecasts.

3.2.1. A general testing framework: the model confidence set approach

We define a finite model set M′ containing N asset pricing models,

indicating the initial number of asset pricing models in our empirical proce-

dure. The MCS approach (see Hansen, Lunde, and Nason, 2011, for a more
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detailed exposition) aims to identify the set M∗ such that

M∗ = {i ∈M0 : ui,j ≤ 0 for all j ∈M0}, (3.4)

where ui,j = E(dij,t) is the expected loss differential between models and

dij,t represents the loss differential between models i and j that is defined

as

dij,t = Li,t − Lj,t, for all i, j ∈M0.. (3.5)

where Lt denotes the loss associated with object i or j. This loss function

can also be customized for an investor by introducing a weighting function,

which yields a more general relative performance measure that is described

as follows:

d̂ij,t = w(rt)dij,t, t = 1, ..., T. (3.6)

In other words, given the set of all forecasting modelsM′ in the comparison

set, the MCS searches for the set of models that cannot be rejected as

statistically inferior at a chosen level of confidence.

The implementation of MCS is based on the following algorithm: begin-

ning with the set of all modelsM′ at significance level α, the null hypothesis

H0 : E(d̂ij,t) = 0, ∀ i > j ∈M′ (3.7)

is tested. If H0 is rejected at the significance level α, then the worst-

performing model is removed, and the process continues until non-rejection

occurs with the set of surviving models being the MCS, M̂∗
α. If a fixed

significance level α is used at each step, then M̂∗
α contains the best model
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from M0, with (1− α) as the level of confidence4.

The relevant t-statistic, tij, provides scaled information on the average

difference in the forecast quality of models i and j and is defined as

tij = dij√
v̂ar(dij)

, dij = 1
T

T∑
t=1

dij,t . (3.8)

where v̂ar(dij) is an estimate of var(dij) and is obtained from a bootstrap

procedure described in Hansen, Lunde, and Nason (2003). In this paper,

the null hypothesis in equation ((3.7)) is tested using the range statistic

TR = max
i,j∈M

|tij| (3.9)

with all p-values obtained by bootstrapping the necessary values 1,000 times.

When the null hypothesis is rejected, the worst-performing model is identi-

fied as

i = arg max
i∈M

di√
v̂ar(di.)

, di. = 1
m− 1

∑
j∈M

dij . (3.10)

The MCS test is a tool to summarize the relative performance of an entire

set of models by determining which models can be considered statistically

superior and at what level of significance. The interpretation of an MCS for

a set of models is analogous to a confidence interval for a parameter in the

sense that the models covered by the MCS are those that cannot be rejected

from the set of best models for a given level of confidence. By attaching

p-values to models, we can easily determine the level of significance at which

individual models can be in the set of superior models and which can be

4Although the testing procedure involves multiple hypothesis tests, this interpretation
is statistically accurate. See Hansen, Lunde, and Nason (2003) for details.
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eliminated as statistically inferior.

3.2.2. Incorporating accuracy preferences

Most practical applications involving joint density forecasts of multivari-

ate asset returns focus on a particular region of the expected distribution

of asset returns. For example, in risk management, the main concern for

banks and other financial institutions is to accurately describe the left tail

of the distribution of their portfolio returns to obtain accurate estimates of

downside risk (e.g., VaR). Thus, incorporating the decision maker’s or the

investor’s distributional accuracy preferences is important.

Because a density expectation can be understood as a collection of prob-

abilities assigned by investors to all attainable events, we use the weighted

scoring rules of Amisano and Giacomini (2007) and adapt it to multivariate

density forecasts. These rules allow investors to assign greater weight to

particular regions of the distribution of the asset return. In some cases,

the investor may be particularly interested in predicting “tail events,” as

these can lead to different asset allocation decisions, whereas in other sce-

narios, the investor is more interested in knowing future events that may

fall near the center of the distribution and ignores the influence of possible

outliers. We can define an appropriate weight function w(.) and compare

the weighted average scores

n−1
T∑
t=2

w(rt)logp(rt|Rt−τ,t−1, Ft−τ,t−1, ft, Zt−1). (3.11)

The weighting function w(.) can be chosen by the investor to select the

desired region of the distribution of rt. As the predicted joint return follows

a multivariate Student’s t-distribution, we can use the following weights for
18



different regions of the density:

• Central tendency: w1(rt) = mvtpdf(rt), where mvtpdf(rt) is the stan-

dard density function (PDF) of the multivariate t-distribution.

• Right tail: w2(rt) = mvtcdf(rt), where mvtcdf(rt) is the standard

probability function (CDF) of the multivariate t-distribution.

• Left tail: w3(rt) = 1 −mvtcdf(rt), where mvtcdf(rt) is the standard

probability function (CDF) of the multivariate t-distribution.

The weighted scoring rule can be customized for the MCS test by using

a more general relative performance measure, as stated in equation (3.6).

3.2.3. Two special cases of accuracy preferences

Studies in the asset pricing literature commonly compare the point fore-

casts of mean asset returns (e.g., Simin, 2008; Ferson, Nallareddy, and Xie,

2013). The assumption underlying this choice is that investors care more

about the central tendency of the predicted return distribution. We include

point mean return forecasting as a special case that places more weight on

the accuracy of the center of the predicted distribution.

Following Fama and French (1996), we evaluate the performance of point

mean return forecasting using the average model pricing error. For a given

portfolio, the pricing error (PE) is calculated as follows:

PE = 1
T

T∑
t=1

(rt − r̂t) (3.12)

The PE is the time-series average of the monthly difference between the

realized and predicted portfolio returns, where rt is the realized return and
19



r̂t is the return forecast from alternative forecasting methods. We use two

measures based on PE: one is cross-sectional average absolute pricing error

across portfolios (Ave |PE|), and the other is the average squared pricing

error across assets (Ave PE2). These two measures are widely used in the

prior literature to evaluate the performance of asset pricing models (e.g.,

Simin, 2008).

A second special case is the assessment of the downside risk faced by

an investor. We examine the alternative models in forming expectations re-

garding 5% VaR, which is the 5% quantile of the predicted asset return dis-

tribution and can be understood as an example of interval forecasting that

emphasizes the tail of the distribution. It can succinctly convey the uncer-

tainty surrounding a point forecast. A 5% VaR forecast can be interpreted

as an interval forecast for future returns, with an interval of (−∞, V aR]

and a confidence level of 95%.

To forecast the tail interval of the joint density of the cross-sectional

return rt, we form a portfolio of the set of risky assets. Under the assumption

that the predictive density of rt has the form of a multivariate Student’s

t-distribution, the VaR forecast of this portfolio can be obtained as follows:

V aRτ
t|Ft−τ,t−1 = µp,t −

√
ν − 2
ν

σp,tt1−τ,ν , (3.13)

where µp,t = ωtE(rt) and σp,t =
√
ωtΣtω′t. E(rt) denotes the m×1 vector of

expected excess returns on risky assets at time t, and Σt is the corresponding

covariance matrix estimate based on the predictive return distribution. ωt
represents the weight of each risky asset in the portfolio. We consider only

equally weighted portfolios for simplicity, but the arguments below hold
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with equal force for any well-diversified portfolio.

To compare the out-of-sample interval forecast, we consider the asym-

metric VaR loss function of González-Rivera, Lee, and Mishra (2004) to

compare the ability of different asset pricing models to predict extreme loss

in returns. The asymmetric VaR loss function of González-Rivera, Lee, and

Mishra (2004) is defined as

l(rt, V aRτ
t|Ft−τ,t−1) = (τ − Iτt )(rt − V aRτ

t|Ft−τ,t−1), (3.14)

where rt is the portfolio return at time t, V aRt|Ft−τ,t−1 denotes the τ level

predicted VaR at time t conditional on the information set Ft−τ,t−1, and

It = 1(rt < V aRt) is an indicator function that equals 1 when rt is below

V aRt and 0 otherwise. The asymmetric VaR loss function represents the

natural candidate to evaluate the asset pricing model performance for tail

risk prediction because it more severely penalizes observations below the

τth quantile level.

3.3. Asset pricing model trimming and pooling

In forming the expectations of asset return density in a model-rich en-

vironment with model uncertainty, two general approaches are commonly

used: model selection and model pooling. Model pooling has often been

used to improve upon single-model forecasts. As noted in the review by

Timmermann (2006), combining models can diversify model uncertainties

and alleviate the structural breaks and misspecifications plaguing individual

models. The model pooling approaches are in the spirit of Box (1980), i.e.,

all models are false, but some are useful. However, in the context of a large

set of potential models, without prior knowledge of the individual models,
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inclusion of a full set of models can be problematic because only a fraction

of the forecasting models is likely to contain valuable information regarding

the target variable, while the remainder of the models are pure noise (Tim-

mermann, 2006). Moreover, when combination weights must be estimated,

the estimation error induced by additional parameters can outweigh the

marginal diversification gains from the additional poor models, particularly

when the full model set may contain implausible predictions. Hence, prior

to combining models, the more important question is how to find “useful

models” to avoid introducing extremely poor models that can contaminate

the pooled forecast. We advocate that it is advantageous to trim models

before pooling them. This approach echoes the sentiment of Armstrong

(1989) to “use sensible models.” In this subsection, we first discuss the out-

of-sample density forecast from the asset pricing model selection and then

describe the trimming and pooling method.

3.3.1. Trimming before pooling

One of the common trimming schemes is optimal fixed trimming. In a

fixed trimming scheme, the number of forecasting models to be discarded is

determined exogenously. The normal practice of fixed trimming is to rank

models according to certain evaluation metrics, to discard a fixed proportion

of models and to use the remaining models to generate the set of best

forecasts. We determine the optimal trimming percentage by maximizing

the LPS of the density forecast from the trimmed model pool. As the

number of models to be discarded (and hence pooled) is exogenously fixed,

discarding the same models for each forecast period is unnecessary. Hence,

in our empirical implementation, we trim and include different sets of models
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based on the applicable model rank in the periods preceding the out-of-

sample testing period.

We propose a new trimming scheme based on the MCS test. Instead of

selecting a single best model, the MCS test can select a set of best models

that perform the same statistically, and the set of models that perform

statistically worse can be eliminated. Hence, the MCS approach provides

a natural way to trim models before pooling. When constructing the best

model set, we begin from the full set of the model candidates and conduct

the MCS test sequentially at a confidence level of 0.1% to retain models

with an associated p-value greater than or equal to 0.1%.

Optimal fixed trimming is as simple as a grid-search method; this trim-

ming method begins with an initial percentage to be trimmed in an attempt

to reveal a trimming percentage that forms a model pool to achieve the best

forecast. Optimal fixed trimming is fully free of statistical test distortions

and can be easily implemented. An important difference between the two

schemes is that MCS trimming accounts for the statistical significance of

differences in the historical performance of the models, but optimal fixed

trimming does not.

We generate the out-of-sample expected density by aggregating the den-

sity forecasts from each model contained in the selected model set. The ag-

gregation uses both optimally and equally weighted averages of the model

forecasts. We provide details of the weighting in the following subsection.

3.3.2. Model pooling

The key input for a model pool is the weight assigned to individual

models. Generally, the combination weights can be estimated by solving,
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minimizing or maximizing an objective function. We obtain the model

weights for optimal density combination by maximizing the log predictive

score criterion, which incorporates the predictive densities of each selected

model.

We adopt the optimal pooling scheme as shown in O’Doherty, Savin,

and Tiwari (2012). The model weights w are chosen to maximize the LS

function:

fT (w) =
T∑
t=2

N∑
i=1

wipi(rt|Rt−τ,t−1, Ft−τ,t−1, ft, Zt−1), (3.15)

subject to the restrictions ∑N
i=1 wi = 1 and wi ≥ 0. pi(rt|Rt−τ,t−1, Ft−τ,t−1,

ft, Zt−1) is the predictive density implied by the ith model. Accordingly,

the optimal prediction pool corresponds to

w∗ = arg max
w

fT (w). (3.16)

We also consider the simple-average weighting scheme that assigns equal

weights to alternative single models, i.e., wi,t = 1/N for the ithmodel, where

i = 1, ..., N . The simple “1/N” rule is found to be dominant in more refined

combination schemes in many empirical forecast combination studies (e.g.,

Timmermann, 2006; Smith and Wallis, 2009).

3.4. Empirical Design Issues

3.4.1. Empirical implementation

Following standard practice, we estimate all model parameters using a

five-year rolling window of monthly time-series data (i.e., τ = 60). There-

fore, the first density forecast is generated for time t = 61 (i.e., July 1968)
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using each of the individual asset pricing models.

For a pool of models, the optimal weights are calculated by maximizing

the LPSs of the density forecast, as shown in equation (3.3). The model

weights are obtained from three designs: the full sample, rolling 10-year

windows, and an expanding window. In the case of the full sample, the

LPS is calculated for time T using monthly predictive densities from time

t = 61 to time t = T , where T is the last month of the sample data (i.e.,

December 2011). In the case of the rolling window, the model weights are

estimated using a rolling window of 10 years (i.e., 120 months); thus, for the

rolling window, the first pooled forecast is made for July 1978 using the data

from July 1968 to June 1978. For the expanding window, the first LPS is

still calculated using predictive densities based on an initial 10-year window

from July 1968 to June 1978, and subsequent LPSs are updated monthly

based on an expanding window of data. In each case, the model weights

are determined at time t using only the information available through time

t− 1.

3.4.2. Sample split and subperiods

Our main focus is on the out-of-sample performance of the alternative

asset pricing models. For the out-of-sample forecast, one important choice is

the split point of the in-sample estimation and the out-of-sample evaluation

periods. As noted by Hansen and Timmermann (2012), out-of-sample tests

rely on how a given data set is partitioned into estimation and evaluation

subsamples. However, to date, there has been no guidance or consensus

regarding how to choose the split point. As the degree of power is the

highest when the forecast evaluation window begins early, corresponding to
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a long out-of-sample period (Hansen and Timmermann, 2012), we retain the

estimation sample in our main results to include 60 monthly observations,

i.e., five years as opposed to the 521 monthly observations in the evaluation

period. To explore the robustness of our results, we choose different lengths

of estimation periods. We use 120 and 300 monthly observations and report

the results in the robustness check section.

In addition to the sample split point, another concern may arise from

the robustness of our results in distinct subperiods. Hence, we also investi-

gate whether our results vary in several subsamples. We divide our testing

sample into five subperiods, including periods prior to and following the

2008 global financial crisis.

4. Data

Our sample contains three sets of data: 1) a return series of testing

assets, 2) a series of pricing factors, and 3) a series of instrumental vari-

ables. Our sample period spans from July 1963 to December 2011. We use

both the 30 value-weighted industry portfolios and the 25 size and book-

to-market (B/M) portfolios as our testing assets. We select these assets to

alleviate concerns regarding the sensitivity of asset pricing testing to the se-

lected testing assets(see Lewellen, Nagel, and Shanken, 2010; Kan, Robotti,

and Shanken, 2013). The monthly portfolio return data are retrieved from

Kenneth French’s website. The monthly excess asset return is calculated

as the gross return in excess of the one-month T-bill rate obtained from

Ibbotson Associates.

Our base model set includes eight asset pricing models that are detailed

in Section Pricing models. The data source and construction of the pricing
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factors of alternative models are provided in AppendixA. We use six com-

monly used instrumental variables for specifying the conditional models.

Following Kan and Robotti (2009) and Hodrick and Zhang (2001), we use

the cyclical part of the natural logarithm of the industrial production index

lagged one period (Lag IP) and a January dummy (JAN) as two separate

instruments. We follow Simin (2008) to group four variables into a vector of

instrument variables: the U.S. one-month T-bill from the CRSP Risk-Free

Rates file (T-bill), the dividend yield of Standard & Poor’s 500 index (Di-

vYld), the spread between the lagged Moody’s Composite Average of Yields

on Corporate Bonds and the U.S. one-month T-bill from the CRSP Risk-

Free Rates file (Term), and the difference between the Moody’s BAA and

AAA corporate bond yield (Junk). Hence, we obtain three sets of instru-

ment variables, including two univariate and one multivariate information

sets.

5. Empirical Results

We summarize the main results of our study in the two following subsec-

tions, which focus on two asset pricing model comparisons and the merits

of asset pricing model pooling, respectively.

5.1. Asset pricing model comparisons

The out-of-sample density forecasting performance of the asset pricing

models will first be compared using LPS with different accuracy prefer-

ences. Table 1 reports the summary statistics for (weighted) LPSs for each

individual model using the full sample. The 2nd and 3rd columns of the

table present results for 30 industry portfolios, with Panel A, B, C and D
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respectively reporting results for entire region, the central tendency and the

left/right tails of the density. Over the entire sample period, the Fama and

French (2015) five-factor model with constant beta performs the best for

the entire region of the density and its left tail, as evidenced by the model’s

(weighted) log score function values of -58806.5269 and -55728.2537, and

the Jagannathan and Wang (1996) CAPM model and the Fama and French

(1993) three-factor model with a constant beta perform the best in the case

of the central tendency and the right tail of the density, with (weighted) log

score function values of -5.9199E-25 and -3063.0472, respectively, which is

the highest of the 120 competing models. By contrast, the Chen, Roll, and

Ross (1986) five-factor model with a time-varying intercept and beta using

the third set of instruments perform the worst in all cases.

For comparison, the 4th and 5th columns of Table 1 report results us-

ing 25 size and B/M portfolios as test assets. As might be expected, the

Fama-French (1993) model with a constant beta should outperform the

other models because this model includes factors particularly designed to

“explain” returns on a cross-section of portfolios sorted by size and B/M

equity (O’Doherty, Savin, and Tiwari, 2012). Consistent with our expec-

tations, the Fama-French (1993) model does exhibit the best out-of-sample

predictive ability in most cases, except for the central tendency, as mea-

sured by the model’s (weighted) log score function values of -28337.6825,

-22514.7137 and -5822.9689. The Liu (2006) liquidity-augmented asset pric-

ing model with a time-varying beta using the third set of instruments per-

forms the best for the central part of the density, with a weighted log score

function value of -1.0103E-12. Similarly, the worst-performing model is the

Chen, Roll, and Ross (1986) five-factor model. The specification with the
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time-varying intercept, beta and risk premium is the worst for the central

tendency, and the specification with the time-varying intercept and beta is

the worst for the other cases.

[Insert Table 1 here.]

Although the aforementioned results indicate the relative accuracy of

forecasts, they do not indicate whether any differences in performance are

significant. The MCS test of Hansen, Lunde, and Nason (2011) will be used

to achieve determine this, and the results are displayed in Figure 1. The

dots in the plot present the (weighted) LPS of the density forecast from

the corresponding model, and the straight red line in the plot indicates

the threshold above which the models are selected into the best model set

based on the MCS test, which is conducted at a significance level of 0.1%.

When equal weights are used to evaluate the density forecast, FF5(Ub),

Carhart4(Ub) and FF3(Ub) are the models selected into the best model set

with a p-value greater than 0.001, and this result implies that those three

models are significantly better then all the others at a significant level.When

focusing only on the central region of the density, all models show some

similarity and are included in the best model set. When shifting attention

to the tails of the density with desirable application in risk management,

Carhart4(Ub)and FF5(Ub) are two models selected into the superior set for

the left tail, and the majority of models are selected into the superior set for

the right tail, with the main exceptions being the CCAPM models. For the

case using 25 size and B/M portfolios as test assets, the MCS test is also

implemented at the significance level of 0.1%. Carhar4(Ub), Carhart4(Uab),

FF3(Ub), FF3(Uab) and FF5(Ub) outperform all the other models and are

selected into the superior set when equal weights are used. Similar to what
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we observed in 30 industry portfolios, all models have p-values greater than

in terms of the central part of the density forecast, and they are all selected

to form the best model set. With respect to the tail forecast, while the left

tail continues to require an aggressive eliminating scheme by including only

Carhart4(Ub), FF3(Ub), FF3(Uab) and FF5(Ub) in the best model set, the

right tail also appears less generous than that in the 30 industry portfolios,

given that only Carhart4(Ub), Carhart4(Uab), Carhart4(Ca1Ub), FF3(Ub),

FF3(Uab), FF5(Ub), FF5(Uab) and FF5(Ca1Ub) are included in the best

model set.

[Insert Figure 1 here.]

In summary, these results reveal several noteworthy points. First, the

Fama and French (1993) 3-factor pricing model, the Carhart (1997) 4-factor

model, and the Fama and French (2015) 5-factor pricing model outperform

the other models in describing both the center and tail of the distribution.

These three models are most frequently selected regardless of which region

of the density on which the investor is more focused. Second, the conditional

asset pricing models are found to be useful in density forecasts of the return

and particularly for the tail forecast, with superior performance to many

unconditional models. This finding contrasts with the previous literature

that primarily focuses on the mean point predictive performance of asset

pricing models and claims that the conditional asset pricing models perform

much worse than unconditional models. The finding of their important

roles in tail forecasting is particularly interesting, as it implies that the

conditional models may be desirable in risk management. Finally, the tail

forecast of the density is more selective for models than the central tendency,

and accuracy in its forecasting is more difficult to achieve. Although all asset
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pricing models are selected into the best model set for central tendency

forecasting of the density, far fewer models are included in the best model

set for tail forecasting.

These results are further corroborated by two special cases. Table 2

and Table 3 present results for both center and tail point forecasts that

focus only on the mean and 5% VaR of the distribution.5 Consistent with

the density forecast, the conditional models are found to be useful for both

center and tail point forecasts. Although the conditional CCAPM model is

included in the best model set for mean point forecasts of the 30 industry

portfolios based on Ave |PE|, both the conditional CCAPM model and the

conditional Fama and French (1993) 3-factor model are selected into the

best model set for the mean point forecast of 25 size and B/M portfolios

based on both Ave |PE| and Ave PE2 at the 5% significance level. In

tail point forecasting, most conditional models are included in the superior

model set for 30 industry portfolios, and conditional CRR5 is selected for

25 size and B/M portfolios at the 5% significance level.

[Insert Table 2 here.]

[Insert Table 3 here.]

5.2. The comparison of alternative strategies in addressing model uncer-

tainty

In this section, we consider four forecasting schemes using the 120 asset

pricing models to compare their out-of-sample forecasting performance in

terms of the entire part of the return distribution, its central tendency, and

5Because of space limitations, we include only representative results of a proportion
of the models here, and the results for the full set of models are available upon request.
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the left and right tails. The forecasting schemes considered here include the

best individual model, the model pooling with the full set of models, and

the model pooling with MCS and optimal trimming.

Table 4 shows the forecasting results for the full density. Columns 2 to

4 report the results based on the full sample, rolling samples and expanding

samples. Panels A and B respectively present results for 30 industry and 25

size and B/M portfolios, respectively. First, we find that combining models

in the best model set constructed using MCS tests outperforms the best

individual model in all cases, which verifies that all individual asset mod-

els may be subject to misspecification bias of an unknown form (Kan and

Robotti, 2009). When the data are not adequately informative, identifying

a single dominant model is not possible. The MCS test approach can be

treated as another model selection device; it selects the set of best models

with the level of confidence that one selects and implicitly trims models

that are not in this set. An advantage of the test is that it does not neces-

sarily select a single model; it instead acknowledges possible limitations in

the data. Given a certain confidence level, if the data are not informative,

many models will be included in the set of best models, as the MCS will

have difficulty distinguishing between the models, and few will be trimmed.

By contrast, if the data are informative, the set of best models will consist

of fewer models. Meanwhile, the performance of the equal weighting scheme

is similar to that of the optimal weight scheme when combining models in

the best model set. This result is not surprising and confirms our intuition

that models included in the best model set are not distinguishable from

one another and that equal weights are fair for each included individual

model. Second, pooling all models with equal weights outperforms the best
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individual model, and the result is robust for both portfolios and different

estimation window schemes. This finding is consistent with the existing

literature documenting that combining predictions from alternative models

often improves upon those forecasts based on a single best model, particu-

larly in an environment with individual models subject to structural breaks

and misspecifications to varying degrees. Finally, we find that pooling mod-

els after optimal trimming always outperforms the pooling of all models for

the 30 industry portfolios, and the pooling model with both optimal trim-

ming and MCS trimming perform better than model pooling with the full

set of models for the 25 size and B/M portfolios.

To consider model forecasting accuracy based on the different preferences

of investors, Table 5, Table 6 and Table 7 report the results for different

forecasting schemes with a particular focus on the central tendency, the left

tail and the right tail. Consistent with the results for the entire portion of

the density, model pooling after either MCS trimming or optimal trimming

performs better than the best individual model and full model pooling, with

several exceptions in the central tendency and left tail forecasts in which

the MCS trimming performs worse than the full model pooling. The MCS

trimming performs best in the central tendency forecast for both the 30

industry portfolios and the 25 size and B/M portfolios with the full sample,

and optimal trimming performs best in all the other cases.

[Insert Table 4 here.]

[Insert Table 5 here.]

[Insert Table 6 here.]

[Insert Table 7 here.]

To better understand the forecasting scheme with model trimming and
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pooling, for each case we present the selected models based on the best

trimming scheme that maximizes the LPS of the density forecast, as shown

in Figure 2. As the performance of asset pricing models is time-varying and

as the true asset return-generating process may also change as a result of

unobservable structural changes, we expect the selected models and their

total numbers to change over time. All the plots in Figure 2 are generated

based on rolling samples with a window size of 120 observations to capture

the time-varying property. Panel A displays the results using 30 industry

portfolios, and Panel B shows the results for 25 size and B/M portfolios.

The figures show that when forming expectations for the central tendency

and the right tail, the time variation of the number of models selected is

much larger than the variation in the number of models for the left tail

and the entire density. In the case of the 30 industry portfolios, although

the number of selected models ranges from 2 to approximately 90 for the

right tail and ranges from 2 to 50 for the central tendency, the number

of models selected for the left tail and the entire density ranges only from

approximately 30 to 75. A similar patten is observed in 25 size and B/M

portfolios. The number of selected models for the entire density, the central

tendency, the left tail and the right tail ranges from 37 to 27, 2 to 38, 37

to 27 and 14 to 38, respectively. Notably, for the central tendency and the

right tail forecasts, the number of models selected increases significantly

in the period surrounding recession periods, as defined by the National

Bureau of Economic Research (NBER). In the figure, periods of economic

stress are indicated by shaded bars, which implies that the underlying asset

return-generating process becomes more complex and the model uncertainty

more severe during times of economic stress and that more models must
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therefore be selected into the model pool to address model uncertainty. By

contrast, the number of selected models for the entire density and the left

tail is relatively stable. These models show variation at the beginning of

the sample and remain at a certain level throughout the remainder of the

sample period.

[Insert Figure 2 here.]

To determine whether the numerical comparison is statistically signif-

icant, we employ the weighted likelihood ratio (WLR) test developed by

Giacomini and White (2006) and Amisano and Giacomini (2007) to com-

pare the forecast accuracy for each forecasting scheme. The null hypothesis

is that the two competing models are equally accurate. We use an un-

weighted version of the WLR test to avoid imposing prior knowledge on

the choice of a particular weighting function.

[Insert Table 8 here.]

Table 8 presents the results of these WLR tests, with Panels A, B, C,

and D reporting results for the entire density, the central tendency, and the

left tail and right tails, respectively. For the case with 30 industry portfolios

as test assets, the optimal trimming clearly offers a statistically significant

improvement relative to the best individual model, the best model set and

the full model pool at more than a small significance level for the forecast

of the entire density and the two tails. By contrast, the best model set and

model pooling perform significantly better than the best individual model

for the three types of forecasts. Whereas the best model set exhibits signif-

icant improvement relative to the model pool for the right tail forecast, the

latter offers significant improvement over the former for the entire density

and the left tail forecast. For the comparisons with respect to central ten-
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dency forecasting, all the forecasting schemes perform quite similarly and

show no significant difference. For the case with 25 size and B/M portfolios

as test assets, the results are qualitatively similar to those in the 30 industry

portfolios. Again, model trimming before pooling improves performance in

a statistically significantly manner in all cases except for the central ten-

dency forecast. Notably, the best model set offers further improvements

over model pooling in these cases.

In summary, we show that trimming before model pooling is advanta-

geous relative to pooling without trimming and model selection, particularly

in an asset pricing context in which potential model specifications are rich.

To uncover the underlying reason why the trimming scheme works best,

we provide a statistical and economic explanation for the results in the fol-

lowing subsections. Further, we explore the economic implications of the

trimming strategy by mimicking the decision-making process of an investor

in actual practice.

6. Statistical and economic interpretations of the gains from trim-

ming

We provide statistical explanations for the relatively good out-of-sample

performance of model trimming. Using forecast encompassing tests, we

demonstrate that trimming removes models that do not provide incremental

information. We also show that trimming reduces estimation noise, thereby

improving forecasting performance in terms of LPS metrics. In addition,

we analyze the economic benefit of model trimming before combination by

attempting to answer the question of whether the benefits vary over time

and particularly across the business cycle and whether reliance on model
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trimming leads to economically meaningful gains from the perspective of

real investment practice.

6.1. Statistical explanation

As documented in Timmermann (2006), forecasts that add only marginal

information should be excluded from the combination because the cost of

their inclusion–increased parameter estimation error–is not matched by sim-

ilar benefits. Before omitting these models, we need a statistical tool to

determine the incremental information provided by each forecast and de-

ciding which forecast can be removed. The forecast encompassing test pro-

vides a means for comparing the information content in different model

forecasts. We employ the test statistics developed by Harvey, Leybourne,

and Newbold (1998) and adapt them to the density forecast loss function,

LPS, to make pairwise comparisons among the 120 asset pricing mod-

els. We let dt+1 = (ei,t+1 − ej,t+1)ei,t+1, d = 1/(T − τ) ∑T
t=τ+1 dt, where

ei,t+1 = −LPSi,t+1 and ej,t+1 = −LPSj,t+1. The test statistic is defined as

HLN = T − τ − 1
T − τ

V̂ (d)−1/2d̄, (6.1)

where V̂ (d̄) = (T − τ)−2 ∑T
t=τ+1(dt − d̄)2. The test statistic follows a t-

distribution with T − τ −1 degrees of freedom, and we test the null hypoth-

esis that the model A forecast encompasses the model B forecast against

the (one-sided) alternative hypothesis that the model A forecast does not

encompass the model B forecast. Therefore, if we reject the null hypothesis

of encompassing, then it is useful to combine forecasts from models A and

B rather than relying solely on the model A forecast.

Table 9 reports p-values for the encompassing test applied to the 120
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asset pricing models in terms of out-of-sample entire density forecasting for

the 30 industry portfolios and the 25 size and B/M portfolios based on

the entire sample. Because of space limitations, we report only a portion

of the representative results, and the full set of results is available upon

request. Each number in the table corresponds to the null hypothesis that

the forecast from the model in the row heading encompasses the forecast

from the model in the column heading. Apparently, the encompass test

cannot reject the null hypothesis in many cases. For example, consider the

unconditional CAPM model in the first row of the table for the 30 industry

portfolios; it encompasses the unconditional consumption CAPM model and

the CRR5 model as well as all the conditional asset pricing models. The

unconditional FF5 model listed in the sixth row of the table encompasses all

models except for the unconditional Carhart4 model. These encompassing

tests thus suggest that it is worthwhile to trim forecasts from individual

models that do not provide additional information. This finding helps to

explain the out-of-sample forecast gain from model trimming documented

in Section.

[Insert Table 9 here.]

6.2. The sensitivity of the results to the trimming percentage

Although the encompassing test verifies the necessity of forecast trim-

ming, another question arises regarding how many models we should trim

to form the optimal forecast combination pool. The existence of pure noise

forecasting in the model pool can inflate forecast error and thus generate

a traditional type of bias-variance tradeoff. The highest possible number

of models should be included to reduce bias. However, adding pure noise
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or forecasts that only add marginal information will increase the variance

in the forecast errors. A useful tool to assess this tradeoff is the sensitivity

plot that depicts the LPS of density forecast as a function of the model

trimming percentage.

Figure 3 shows how the LPS of the entire density forecast changes with

the significance level of the MCS test and the trimming percentage in op-

timal trimming schemes using the entire sample. Panels A and B present

the results for the 30 industry portfolios and 25 size and B/M portfolios,

respectively. In the case using optimal trimming schemes to determine the

final model combination pool, for the 30 industry portfolios, the LPS of

the entire density forecast from the trimmed model pool increases when

the trimming percentage changes from 0.1% to 50%, implying that trim-

ming more forecasts from the bottom 50% of the models helps improve the

forecast performance of the model pool. However, the LPS subsequently de-

creases when the trimming percentage varies from 50% to 99.9%, which thus

indicates that trimming forecasts from the top 50% of the models causes

the model pool performance to decline. The LPS achieves its highest level

near -57,000, when almost all of the bottom 50% models are trimmed.

[Insert Figure 3 here.]

By contrast, the LPS constantly decreases with the increasing signif-

icance level in the MCS test. We know that choosing a low significance

level in the MCS test will result in fewer models being trimmed, whereas

a high significance level induces more models to be trimmed. This result

thus suggests a soft trimming rule for the MCS scheme. Notably, the sig-

nificance level α used in the MCS test does not imply that the bottom α%

models are trimmed. For example, when α = 0.1%, we actually trim the
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bottom 97% of the models. A similar patten is observed for the 25 size and

B/M portfolios. The LPS of the density forecast reaches its highest level

when trimming the bottom 20% of models (approximately) based on an op-

timal trimming scheme and when using a 0.1% significance level (trimming

around the bottom 96% of the models) based on the MCS test. These sensi-

tivity plots further support the benefit of model trimming in out-of-sample

density forecasts.

6.3. Economic interpretation

We link the gains of model trimming in forming asset return density

expectations to the real economy. First, we investigate whether the forecast

gains from model trimming vary over time and are more prominent during

the recession period. The intuition is that when the market is in distress,

model uncertainty is more severe, which in turn leads to the failure of indi-

vidual models and increased forecast noise, such that the benefits of model

trimming are likely to be more pronounced in periods when the market

is down. To explore these issues, we examine the performance of optimal

trimming schemes relative to the best individual model (the Fama-French

five-factor model) and full model pooling.

Figure 4 presents the difference in LPS of the entire density forecast

between optimal trimming and best individual model/full model pooling

based on a rolling sample. Panel A shows the results for the 30 indus-

try portfolios, and Panel B provides the results for the 25 size and B/M

portfolios. The top of each panel shows the difference between the opti-

mal trimming and the best individual model, and the bottom of each panel

shows the difference between the optimal trimming and the best model set
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constructed based on the MCS test. In general, the difference in LPS be-

tween the optimal trimming and the best individual model (and full model

pooling) is positive over time. In particular, the model trimming strikingly

outperforms the other two schemes during periods of recession, as defined

by the NBER (these periods are indicated by the shaded areas of the figure).

These results suggest that model trimming is potentially an advantageous

approach relative to model selection and model pooling in the context of

asset pricing models, particularly during economic downturns.

[Insert Figure 4 here.]

6.4. Economic implications

Thus far, we have indicated the statistical significance of the trimming

approach with respect to out-of-sample density expectations. However, ex-

amining whether model trimming leads to economically significant gains

from the perspective of a real investor is of greater interest. We investigate

the benefits of trimming using economic metrics to complement our sta-

tistical examinations. Density forecasting is more meaningful and relevant

for asset allocation, and we evaluate the economic performance of trimming

from the perspective of mean variance optimizing investors. We compare

the realized certainty equivalent return (CER) and the Sharpe ratio using

different asset return density forecasting methods: single best, model pool-

ing with equal weights, model pooling with optimal weights, MCS trimming

and optimal fixed trimming with both equal and optimal weights. We con-

sider different specifications of investor risk aversions and transaction cost.
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The decision problem of an investor can be generally described as follows:

max
ω

ω′Ert − (1
2λ)ω′Σtω −

m∑
i=1

κ(ωi,t − ωi,t−1) (6.2)

s.t.
m∑
i=1

ωi,t ≤ 1, ωi,t ≥ 0,

where ω denotes the m× 1 vector of weights allocated to m risky assets by

the investor at the beginning of month t, and Ert and Σt are the vectors of

expected excess returns and the covariance matrix of returns, respectively,

which are extracted from the first 2 moments of the predictive return dis-

tribution obtained from a particular forecasting method documented in the

preceding sections based on information available at the end of month t−1.

In addition, λ represents the investor’s degree of relative risk aversion, and

κ is the proportional transaction cost incurred.

The CER of a portfolio can be calculated as CER = E(rp) − 1
2λσ

2
p.

The E(rp) is the mean expected return of the portfolio, which is calculated

as E(rp) = ∑m
i=1 ωi,t−1Eri,t + (1 − ∑m

i=1 ωi,t)rft , where rf is the risk-free

rate. σp is the variance in the portfolio obtained from ∑m
i=1 ωi,t−1σi,t +∑m

i=1 ωi,t−1(Eri, t−E(rp))(Eri, t−E(rp)′. The Sharpe ratio can be obtained

as follows: Sharpe ratio = E(rp)
σp

Following O’Doherty, Savin, and Tiwari (2012), we also check the ro-

bustness of the results using 3 levels of investor risk aversion: (1) low risk

aversion with λ equal to 2, (2) moderate risk aversion with λ equal to 5, and

(3) high risk aversion with λ equal to 10. We also begin with a 0 transaction

cost and then increase the value of κ to a more realistic number, 0.0025,

which is equivalent to a proportional transaction cost of 50 basis points (bp)

for a round-trip trade in stocks, and we assume that the investor’s position
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in the risk-free asset can be altered with no transaction costs.

We begin with the initial case without transaction costs, as presented

in Table 10, which shows that the MCS and optimal trimming deliver the

highest CERs and Sharpe ratio for investors with high risk aversion, with a

λ equal to 10. For moderate risk aversion, the MCS and optimal trimming

also have the highest economic gains under the full sample and rolling win-

dow forecasting scheme, whereas model pooling with equal weights using

the expanding window performs better when investing in the 25 industry

portfolios in addition to T-bills. For low risk aversion, the MCS and optimal

trimming also generally perform better, except for the few cases involving

investing in the 25 size and B/M portfolios. We then consider more realistic

scenarios with transaction costs in Table 11. Considering the transaction

costs, the single best model performs better than either pooling or trim-

ming in only a few cases; this result is consistent with O’Doherty, Savin,

and Tiwari (2012). Using the full sample as the forecasting window scheme

and the strategy that invests in the 30 industry portfolios in addition to T-

bills, we find that the MCS and optimal trimming obtain the best economic

performance when evaluated using both the CER and Sharpe ratio under

all levels of risk aversion.

[Insert Table 10 here.]

[Insert Table 11 here.]

7. Robustness Check

We now conduct a robustness check to ensure that the results are robust

to the choices of the sample split points and different subsample periods.

We perform robustness checks using 10 years and 25 years as the initial
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estimation sample, in contrast to the main results based on five years. The

10-year and 25-year split points respectively contain 120 and 300 monthly

observations in the model estimation period and leave the rest for out-of-

sample evaluation.

These robustness check results are shown in Table 12. We can observe

that the ranking of the four forecasting schemes remains using the two

different split points. The optimal trimming scheme still performs best and

is followed by the best model set constructed based on the MCS test, the

model pool and the best individual model. The gains from model trimming

are preserved even when the split point is changed.

[Insert Table 12 here.]

Additionally, in the previous analyses, we compare the forecasting per-

formance of different schemes using the full out-of-sample periods. How-

ever, the four schemes might perform differently, and their ranking may

differ over the various subsample evaluation periods. Thus, we again per-

form the rolling estimation using data from the first five years as the initial

window and move one month ahead each time to re-estimate the model

and to generate one-step-ahead forecasts. The out-of-sample forecasts are

then compared in five different subsample periods: 1968-1978, 1978-1998,

1998-2008, and 2008-2011.

The results of the forecasting scheme comparisons in different evaluation

periods in terms of the entire density forecast are presented in Table 13. The

model weights in the forecast combination are generated based on the entire

sample. The table format is similar to the previous tables, except that we

compare five approximately 10-year evaluation periods. All the forecasting

schemes perform at their worst in the 2008-2011 subperiod and at their
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best in the 1968-1978 subperiod in the case using 30 industry portfolios

as a testing asset, whereas in the case of 25 size and B/M portfolios, they

perform the worst in the 1998-2008 subperiod and best in the 2008-2011

subperiod. More importantly, optimal trimming performs the best for the

30 industry portfolios in all subperiods, and the best model set constructed

using MCS outperforms all others in the 25 size and B/M portfolios. Thus,

model trimming generates forecasting gains not only for the entire sample

but also for all the subperiods considered here.

[Insert Table 13 here.]

8. Conclusion

This paper compares out-of-sample density forecasts from 120 empirical

asset pricing model comparisons. The paper not only considers a compre-

hensive set of models and evaluates density forecasts but also incorporates

the accuracy preferences of different regions of the asset return distributions.

The incorporation of distributional accuracy preferences distinguishes this

paper from existing studies with asset pricing model comparisons, and this

paper therefore has more practical value. The paper finds that although un-

conditional models are superior under most distributional accuracy prefer-

ences, certain conditional model specifications perform similarly and cannot

be significantly differentiated from unconditional models when the central

tendency or the right tail of the asset returns are weighted as more impor-

tant. One potential explanation for the results is that the sample data that

researchers in this field can normally obtain are not sufficiently informative

to exclude conditional models from the model confidence set. Furthermore,

conditional models can be useful in capturing particular parts of asset return
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distributions. The findings in this regard can contribute new knowledge to

the asset pricing model comparison literature.

The model comparison in this paper can provide useful guidance for

practical use in selecting the best model. However, without observing the

true asset pricing model, it is neither plausible to select a single model as the

dominating model and to exclude potentially useful information contained

in other models nor convincing to pool all models. In a model-rich context

(i.e., when the number of models at one’s disposal is large), it makes more

sense to first trim models and then pool the sensible models. This paper

shows that pooling the trimmed model set is advantageous regardless of

which parts of the asset return distributions are regarded as more important.

The statistical explanation of the results is that the trimmed models are the

best encompassed by the selected models, and trimming exhibits more gains

during economic distress when a fair number of models perform poorly.

Notably, the advantages of trimming are shown to be both statistically

significant and economically beneficial.

The usefulness of alternative asset pricing models has continued to pique

the interest of scholars. As noted by Ferson, Nallareddy, and Xie (2013), the

practical utility of an asset pricing model ultimately depends on its out-of-

sample performance. The out-of-sample performance of density forecasting

is of great interest, and most practical applications rely on this approach.

Recent studies assessing alternative asset pricing models (e.g., Greenwood

and Shleifer, 2014; Berk and van Binsbergen, 2015) include external infor-

mation on investors’ preferences to validate the models. Although these

assessments aim to focus on validation beyond the practical utility of asset

pricing models, it is also of practical importance to reflect investors’ prefer-
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ence in out-of-sample asset pricing model comparisons as well as to design

ways to improve the model performance. Our study attempts to contribute

to this line of research, and we expect further research in this direction in

the future.
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AppendixA. Description of asset pricing models

We include eight base asset pricing models. The data sources to con-

struct each model are as follows:

(1) CAPM. The pricing factor of the CAPM is the market factor, and

we use the value-weighted combined NYSE-AMEX-NASDAQ index

provided by CRSP;

(2) CCAPM. The factor is the growth rate of real non-durables consump-

tion, as reported by the Bureau of Economics Analysis, U.S. Depart-

ment of Commerce;

(3) CRR5. Merton’s 1973 intertemporal capital asset pricing model (ICA-

PM) notes that any state variable that predicts future investment op-

portunities serves as a state variable. Chen, Roll, and Ross (1986) use

five macroeconomic variables (monthly growth in industrial produc-

tion, change in expected inflation, unexpected inflation, risk premium,

and a term structure factor) as pricing factors. Following O’Doherty,

Savin, and Tiwari (2012), we collect the data to construct these five

factors from the Ibbotson Yearbook and Laura Xiaolei Liu’s website;

(4) JW. The JW model includes a CAPM market factor, the default pre-

mium, and the per capita labor income growth rate. We use the same

market factor for the JW model as for the CAPM; we calculate the

default premium as the lagged yield spread between BAA- and AAA-

rated corporate bonds from the Board of Governors of the Federal

Reserve System; we measure the per capita labor income growth rate
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as (Lt−1 + Lt−2)/(Lt−2 + Lt−3) − 1, where L is defined as the differ-

ence between personal income and dividend income per capita (from

the Bureau of Economics Analysis, U.S. Department of Commerce).

Following Jagannathan and Wang (1996), we calculate the 2-month

moving average of the per capita labor income growth rate to reduce

the influence of measurement errors;

(5) FF3. The FF3 augments the CAPM with with two additional factors:

SMB, the return difference between small and large portfolios, and

HML, the return difference between portfolios with high and low book-

to-market ratios. We collect the relevant factor data from Kenneth

French’s website;

(6) Carhart4. The four-factor model introduces one more momentum

factor, up minus down, to the Fama and French (1993) three-factor

model, which can also be obtained from Kenneth French’s website;

(7) FF5. The five-factor model adds two additional factors to the FF3, the

return spread between a 30-year Treasury bond and the one-month T-

bill and the return spread between long-term corporate and long-term

government bonds. The series of these two factors are from Ibbotson

Associates;

(8) LIQ. Recent studies note that liquidity factors play an important role

in asset pricing, and Liu (2006) augments CAPM with a liquidity

factor. We would like to thank this author for providing the liquidity

factor data.
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We summarize the common sets of instrumental variables used in exist-

ing asset pricing studies and use these variables to specify our conditional

models. With the choice of different sets of instruments, we obtain a total

of 120 empirical asset pricing models. We index the models from 1 to 120

shown in Table A.1. In the table,“U” denotes the unconditional specifi-

cation, while “C” denotes the conditional specification. “ab” denotes the

intercept and beta, and “f” denotes the factor risk premium. The Ara-

bic number denotes which of the three instrument sets is used. The Lag

IP, JAN and the vector (containing T-bill, DivYld, Term, Junk) are num-

bered sequentially from 1 to 3. For example, the CAPM(Ca1Ub) denotes

the CAPM model with a time-varying intercept and a constant beta. The

time-varying intercept is estimated using the first instrument, Lag IP.
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Table A.1: Empirical specifications and number indices of the asset pricing models

Unconditional Models Conditional Models
Index With time-varying factors Index With time-varying intercepts Index With time-varying beta (No intercept) Index With time-varying intercepts and beta Index

CAPM(Uab) 17 CCAPM(UabCf) 79 CAPM(Ca3Ub) 9 FF5(Cb3) 3 FF5(Cab3) 1
LIQ(Uab) 29 CAPM(UabCf) 80 CAPM(Ca2Ub) 14 FF3(Cb3) 8 Carhart4(Cab3) 2

Carhart4(Uab) 36 CCAPM(CbCf) 81 CAPM(Ca1Ub) 16 LIQ(Cb3) 26 FF3(Cab3) 4
FF3(Uab) 37 CAPM(CbCf) 82 LIQ(Ca3Ub) 22 FF3(Cb1) 40 Carhart4(Cb3) 5

CAPM(Ub) 45 CCAPM(UbCf) 84 Carhart4(Ca3Ub) 23 FF3(Cb2) 41 LIQ(Cab3) 6
FF3(Ub) 50 CAPM(UbCf) 85 FF3(Ca3Ub) 24 LIQ(Cb1) 44 CAPM(Cab3) 7
LIQ(Ub) 51 CCAPM(CabCf) 86 LIQ(Ca2Ub) 25 LIQ(Cb2) 46 Carhart4(Cab2) 10

Carhart4(Ub) 52 CAPM(CabCf) 87 LIQ(Ca1Ub) 27 FF5(Cb2) 48 CAPM(Cab2) 11
FF5(Uab) 55 LIQ(UabCf) 90 Carhart4(Ca2Ub) 28 FF5(Cb1) 53 JW(Cab3) 12
FF5(Ub) 60 LIQ(UbCf) 91 FF3(Ca2Ub) 30 CRR5(Cb3) 68 CAPM(Cab1) 13
JW(Uab) 63 LIQ(CbCf) 92 Carhart4(Ca1Ub) 34 CRR5(Cb1) 94 Carhart4(Cab1) 15
JW(Ub) 66 LIQ(CabCf) 93 FF3(Ca1Ub) 35 CRR5(Cb2) 95 LIQ(Cab1) 18

CCAPM(Uab) 77 JW(UabCf) 96 FF5(Ca3Ub) 47 FF3(Cab2) 19
CCAPM(Ub) 83 FF3(UabCf) 97 FF5(Ca2Ub) 49 FF3(Cab1) 20
CRR5(Uab) 109 FF3(UbCf) 98 FF5(Ca1Ub) 54 LIQ(Cab2) 21
CRR5(Ub) 114 JW(UbCf) 99 JW(Ca3Ub) 59 FF5(Cab2) 31

JW(CbCf) 101 JW(Ca2Ub) 61 CAPM(Cb3) 32
FF3(CbCf) 102 JW(Ca1Ub) 62 FF5(Cab1) 33
JW(CabCf) 103 CCAPM(Ca3Ub) 70 Carhart4(Cb2) 38
FF3(CabCf) 104 CCAPM(Ca2Ub) 74 Carhart4(Cb1) 39

Carhart4(UabCf) 105 CCAPM(Ca1Ub) 75 CAPM(Cb1) 42
Carhart4(UbCf) 106 CRR5(Ca3Ub) 100 CAPM(Cb2) 43
Carhart4(CbCf) 110 CRR5(Ca2Ub) 107 JW(Cb3) 56
Carhart4(CabCf) 111 CRR5(Ca1Ub) 108 JW(Cab2) 57

CRR5(UabCf) 112 JW(Cab1) 58
FF5(UabCf) 113 JW(Cb2) 64
CRR5(UbCf) 115 JW(Cb1) 65
FF5(UbCf) 116 CRR5(Cab3) 67
FF5(CbCf) 117 CCAPM(Cab3) 69

CRR5(CbCf) 118 CCAPM(Cb3) 71
CRR5(CabCf) 119 CCAPM(Cab2) 72
FF5(CabCf) 120 CCAPM(Cab1) 73

CCAPM(Cb2) 76
CCAPM(Cb1) 78
CRR5(Cab1) 88
CRR5(Cab2) 89
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Table 1: Summary statistics for log predictive scores for individual asset pricing models

This table reports the descriptive statistics for the (weighted) log predictive scores (de-
noted as LPSs or WLPSs) for the 120 asset pricing models. The models included are
listed in AppendixA. For a given model, the WLPS is computed from the predictive
densities based on equation (3.11) using the full sample. The table reports results for
two distinct sets of test assets, namely, the 30 value-weighted industry portfolios and
the standard Fama-French 25 size and B/M portfolios. The four panels represent four
different distributional accuracy preferences. Panels A to D present results for equal
weighting, the central tendency accuracy preference, and the left and right tail prefer-
ences, respectively. Each panel summarizes the maximum, minimum, 75%, 50%, and
25% quartiles and mean of the (W)LPS of the all the models included.

30 industry portfolios 25 size and B/M portfolios

Panel A: Equal
LPS Model LPS Model

Max -58806.5269 FF5(Ub) -28337.6825 FF3(Ub)
Min -88888.5509 CRR5(Cab3) -67155.8090 CRR5(Cab3)
75\% -68438.2414 CCAPM(Ca1Ub) -51279.7880 CAPM(UabCf)
50\% -66657.6769 CRR5(Ub) -42337.2928 JW(Cab1)
25\% -61657.6868 FF3(Ca3Ub) -37657.5897 FF5(Cb3)
Mean -65685.7382 -43194.5099
Panel B: Central tendency

WLPS Model WLPS Model
Max -5.9199E-25 JW(Ub) -1.0103E-12 LIQ(Cb3)
Min -1.1296E-24 CRR5(Cab3) -2.9887E-12 CRR5(CabCf)
75\% -7.1124E-25 CCAPM(Ub) -2.0555E-12 CRR5(Ub)
50\% -6.9636E-25 LIQ(UabCf) -1.5957E-12 JW(Uab)
25\% -6.3344E-25 FF3(Ca1Ub) -1.1784E-12 FF5(Ca1Ub)
Mean -6.8666E-25 -1.6465E-12
Panel C: Left tail

WLPS Model WLPS Model
Max -55728.2537 FF5(Ub) -22514.7137 FF3(Ub)
Min -84263.4497 CRR5(Cab3) -53138.0808 CRR5(Cab3)
75\% -64287.9939 CRR5(Ca2Ub) -40606.1465 CAPM(UabCf)
50\% -63091.0752 CRR5(Ub) -33628.0721 JW(Cab1)
25\% -58466.2133 FF3(Ca3Ub) -29811.2212 FF5(Cb3)
Mean -62226.0072 -34241.2057
Panel D: Right tail

WLPS Model WLPS Model
Max -3063.0472 FF3(Ub) -5822.9689 FF3(Ub)
Min -4625.1012 CRR5(Cab3) -14017.7282 CRR5(Cab3)
75\% -3643.4304 CRR5(Ca2Ub) -10642.9444 CRR5(Uab)
50\% -3551.8357 FF5(UbCf) -8709.2207 JW(Cab1)
25\% -3190.7245 CAPM(Ca1Ub) -7846.3684 FF5(Cb3)
Mean -3459.7310 -8953.3042
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Table 2: Comparison of individual asset pricing models: out-of-sample point forecasts
(1968-2011)

This table compares the out-of-sample mean return point forecast constructed from a
proportion of the 120 asset pricing models described in AppendixA. Because of space
limitations, the complete results for all models are not presented here but are available
upon request from the authors. The models reported are representative of the main
findings. The testing sample period is from 1968 to 2011. The table reports results for
two distinct sets of test assets, namely, the 30 value-weighted industry portfolios and
the standard Fama-French 25 size and B/M portfolios. Ave |PE| is the average absolute
pricing error, and Ave PE2 represents the average squared pricing error. pmcs denotes
the p-value of the Hansen, Lunde, and Nason (2011) model confidence set (MCS) test at
a significance level of 0.1%. The numbers in bold are the smallest number or the lowest
loss in each column.

Panel A: 30 industry portfolios Panel B: 25 size and B/M portfolios
Model Ave |PE| Pmcs Ave PE2 Pmcs Ave |PE| Pmcs Ave PE2 Pmcs

CAPM(U) 0.1620 0.0000 0.0501 0.0000 0.2648 0.0000 0.0963 0.0000
CCAPM(U) 0.1358 0.0000 0.0332 0.0000 0.1495 0.0000 0.0288 0.0000
CRR5(U) 0.2641 0.0000 0.0951 0.0000 0.2999 0.0000 0.1043 0.0000
Carhart4(U) 0.0390 1.0000 0.0024 1.0000 0.0301 1.0000 0.0021 1.0000
FF3(U) 0.4747 0.0000 0.2594 0.0000 0.5865 0.0000 0.3767 0.0000
FF5(U) 0.0515 0.0000 0.0037 0.4450 0.0777 0.0000 0.0085 0.0000
JW(U) 0.1675 0.0000 0.0466 0.0000 0.1018 0.0000 0.0191 0.0000
LIQ(U) 0.0472 0.7210 0.0032 0.5010 0.0781 0.0000 0.0093 0.0000
CAPM(C) 0.1835 0.0000 0.0566 0.0000 0.0978 0.0000 0.0207 0.0000
CCAPM(C) 0.0513 0.3330 0.0042 0.0020 0.0703 0.5020 0.0084 0.8270
CRR5(C) 0.2198 0.0000 0.0805 0.0000 0.0704 0.0000 0.0094 0.0000
Carhart4(C) 0.0980 0.0000 0.0138 0.0000 0.1504 0.0000 0.0278 0.0000
FF3(C) 0.0528 0.0000 0.0051 0.0000 0.0447 0.6110 0.0034 0.8270
FF5(C) 0.0632 0.0000 0.0055 0.0000 0.0773 0.0000 0.0086 0.0000
JW(C) 0.1674 0.0000 0.0534 0.0000 0.1267 0.0000 0.0240 0.0000
LIQ(C) 0.1648 0.0000 0.0332 0.0000 0.1161 0.0000 0.0165 0.0000
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Table 3: Comparison of individual asset pricing models: out-of-sample tail interval fore-
casts

This table compares the out-of-sample tail interval forecast, the value-at-risk (VaR),
constructed from a proportion of the 120 asset pricing models described in AppendixA.
Because of space limitations, the complete results for all models are not presented here
but are available upon request from the authors. The models reported represent the
main findings. The testing sample period is from 1968 to 2011.The table reports results
for two distinct sets of test assets, namely, the 30 value-weighted industry portfolios
and the standard Fama-French 25 size and B/M portfolios. The VaR loss is defined
and calculated from equation (3.14). pmcs denotes the p-value of the Hansen, Lunde,
and Nason (2011) model confidence set (MCS) test at a significance level of 0.1%. The
numbers in bold are the smallest number or the lowest loss in each column.

Panel A: 30 industry portfolios Panel B: 25 size and B/M portfolios
Model VaR loss Pmcs VaR loss Pmcs

CAPM(U) 0.9548 0.4900 1.0486 0.0390
CCAPM(U) 1.1714 0.0510 1.2554 0.0080
CRR5(U) 1.3935 0.0000 1.4926 0.0000
Carhart4(U) 1.2184 0.0510 1.2728 0.0080
FF3(U) 1.0416 0.0510 1.1163 0.0390
FF5(U) 1.0730 0.0510 1.1261 0.0080
JW(U) 0.9433 1.0000 1.0256 1.0000
LIQ(U) 1.1013 0.0510 1.1494 0.0080
CAPM(C) 0.9563 0.2920 1.0366 0.0390
CCAPM(C) 1.1143 0.0510 1.1333 0.0080
CRR5(C) 0.9788 0.0510 1.0356 0.0960
Carhart4(C) 1.0769 0.0510 1.1246 0.0390
FF3(C) 0.9857 0.0510 1.1105 0.0390
FF5(C) 1.1002 0.0510 1.1274 0.0080
JW(C) 0.9704 0.0510 1.0736 0.0390
LIQ(C) 1.1575 0.0510 1.2173 0.0080
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Table 4: Comparison of model trimming and pooling without accuracy preferences

This table compares out-of-sample density forecasts constructed from the single best
model and three types of model pools, namely, the model pool with a full set of models
(Pool), the model pool with a trimmed model set using MCS trimming (MCS Best Model
Set) and the optimal fixed trimming (Optimal Trimmed). The models are pooled using
both simple equal weighting (EW) and optimal weighting (OptW). The table assumes
that the investor weights different regions of the asset distribution equally, i.e., with no
distributional preference. Panel A reports the log predictive scores (LPSs) for the 30
value-weighted industry portfolios, and Panel B presents LPSs for the standard Fama-
French 25 size and B/M portfolios. The forecasts are made using the full sample, rolling
window and expanding window. The numbers in bold are the highest LPSs in the column.

Method Full sample Rolling sample Expanding sample

Panel A: 30 industry portfolios
Best Individual Model -58806.5269 -13576.5301 -35038.8957
Pool (EW) -57249.1131 -13223.1479 -34134.9119
Pool (OptW) -59715.0635 -13791.3497 -35650.3174
MCS Best Model Set (EW) -57740.1320 -13276.9623 -34448.5022
MCS Best Model Set (OptW) -57739.4894 -13276.8614 -34448.1943
Optimal Trimmed (EW) -57040.7461 -13175.5444 -34004.8995
Optimal Trimmed (OptW) -57035.1348 -13174.4918 -34001.5961
Panel B: 25 size and B/M Portfolios
Best Individual Model -28337.6825 -6455.2860 -16970.9397
Pool (EW) -28011.2539 -6396.9988 -16808.9017
Pool (OptW) -30343.7427 -6933.7763 -18241.1301
MCS Best Model Set (EW) -27487.0239 -6273.6538 -16511.3390
MCS Best Model Set (OptW) -27487.3096 -6273.6646 -16511.5821
Optimal Trimmed (EW) -27342.0575 -6242.2426 -16413.5114
Optimal Trimmed (OptW) -27340.7510 -6241.1723 -16411.5909
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Table 5: Comparison of model trimming and pooling with accuracy preferences for the
central tendency

This table compares out-of-sample density forecasts from the single best model and
three types of model pools, namely, the model pool with full set of models (Pool), the
model pool with trimmed model set using MCS trimming (MCS Best Model Set) and
the optimal fixed trimming (Optimal Trimmed). The models are pooled using both
simple equal weighting (EW) and optimal weighting (OptW). The table assumes that
the investor weights the forecast accuracy of the central tendency of the asset distribution
as more important. Panel A reports the weighted log predictive scores (WLPSs) for the
30 value-weighted industry portfolios, and Panel B presents WLPSs for the standard
Fama-French 25 size and B/M portfolios. The forecasts are made using the full sample,
rolling window and expanding window. The numbers in bold are the highest WLPSs in
the column.

Method Full sample Rolling Sample Expanding sample

Panel A: 30 industry portfolios
Single Best Model -5.9199E-25 -4.92E-25 -3.9576E-25
Pool (EW) -5.9929E-25 -4.6374E-25 -3.017E-25
Pool (OptW) -6.3221E-25 -4.8835E-25 -3.1858E-25
MCS Best Model Set (EW) -5.8589E-25 -4.6374E-25 -3.017E-25
MCS Best Model Set (OptW) -5.8587E-25 -4.6306E-25 -3.0132E-25
Optimal Trimmed (EW) -5.884E-25 -4.4738E-25 -2.9679E-25
Optimal Trimmed (OptW) -5.884E-25 -4.4736E-25 -2.9678E-25
Panel B: 25 size and B/M portfolios
Single Best Model -1.0103E-12 -2.8708E-13 -7.6878E-13
Pool (EW) -1.078E-12 -9.3859E-14 -5.6756E-13
Pool (OptW) -1.2349E-12 -1.0635E-13 -6.458E-13
MCS Best Model Set (EW) -9.8801E-13 -9.3859E-14 -5.6756E-13
MCS Best Model Set (OptW) -9.8789E-13 -9.2819E-14 -5.6142E-13
Optimal Trimmed (EW) -1.0085E-12 -8.7716E-14 -5.3631E-13
Optimal Trimmed (OptW) -1.0081E-12 -8.7717E-14 -5.362E-13
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Table 6: Comparison of model trimming and pooling with accuracy preferences for the
left tail

This table compares out-of-sample density forecasts from the single best model and
three types of model pools, namely, the model pool with full set of models (Pool), the
model pool with trimmed model set using MCS trimming (MCS Best Model Set) and
the optimal fixed trimming (Optimal Trimmed). The models are pooled using both
simple equal weighting (EW) and optimal weighting (OptW). The table assumes that
the investor weights the forecast accuracy of the left tail of the asset distribution as
more important. Panel A reports the weighted log predictive scores (WLPSs) for the 30
value-weighted industry portfolios, and Panel B presents the WLPSs for the standard
Fama-French 25 size and B/M portfolios. The forecasts are made using the full sample,
rolling window and expanding window. The numbers in bold are the highest WLPSs in
the column.

Method Full sample Rolling sample Expanding sample

Panel A: 30 industry portfolios
Single Best Model -55728.2537 -12970.7945 -33190.2797
Pool (EW) -54281.9429 -12640.1063 -32341.7020
Pool (OptW) -56618.2457 -13182.6582 -33776.3960
MCS Best Model Set (EW) -54762.9739 -12696.1849 -32620.8011
MCS Best Model Set (OptW) -54762.8647 -12696.0915 -32620.5558
Optimal Trimmed (EW) -54086.6217 -12594.7428 -32220.1794
Optimal Trimmed (OptW) -54081.1989 -12593.7235 -32216.9643
Panel B: 25 size and B/M portfolios
Single Best Model -22514.7137 -5156.2693 -13444.8753
Pool (EW) -22250.3153 -5108.7521 -13310.9732
Pool (OptW) -24102.3409 -5535.9947 -14450.4524
MCS Best Model Set (EW) -21838.0966 -5006.8436 -13064.3019
MCS Best Model Set (OptW) -21838.3545 -5006.8526 -13064.5108
Optimal Trimmed (EW) -21715.8897 -4986.5199 -12991.5981
Optimal Trimmed (OptW) -21715.0386 -4985.6163 -12990.7743

60



Table 7: Comparison of model trimming and pooling with accuracy preferences for the
right tail

This table compares out-of-sample density forecasts from the single best model and
three types of model pools, namely, the model pool with full set of models (Pool), the
model pool with trimmed model set using MCS trimming (MCS Best Model Set) and
the optimal fixed trimming (Optimal Trimmed). The models are pooled using both
simple equal weighting (EW) and optimal weighting (OptW). The table assumes that
the investor weights the forecast accuracy of the right tail of the asset distribution as
more important. Panel A reports the weighted log predictive scores (WLPSs) for the
30 value-weighted industry portfolios, and Panel B presents WLPSs for the standard
Fama-French 25 size and B/M portfolios. The forecasts are made using the full sample,
rolling window and expanding window. The numbers in bold are the highest WLPSs in
the column.

Method Full sample Rolling sample Expanding sample

Panel A: 30 industry portfolios
Single Best Model -3063.0472 -595.2215 -1847.5006
Pool (EW) -2967.1701 -583.0416 -1793.2099
Pool (OptW) -3096.7025 -608.6125 -1873.8404
MCS Best Model Set (EW) -2955.3241 -582.8607 -1792.2300
MCS Best Model Set (OptW) -2954.7743 -582.5064 -1791.0964
Optimal Trimmed (EW) -2953.1927 -579.5898 -1784.0969
Optimal Trimmed (OptW) -2952.9598 -579.5456 -1783.9720
Panel B: 25 size and B/M portfolios
Single Best Model -5822.9689 -1287.1004 -3522.1637
Pool (EW) -5760.9386 -1288.2467 -3497.9285
Pool (OptW) -6241.4142 -1397.6818 -3790.5856
MCS Best Model Set (EW) -5646.6626 -1259.0836 -3426.1081
MCS Best Model Set (OptW) -5646.6391 -1257.8978 -3425.7746
Optimal Trimmed (EW) -5626.1678 -1254.9516 -3420.3990
Optimal Trimmed (OptW) -5625.7244 -1254.8462 -3419.2161
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Table 8: Comparison of model trimming and pooling: weighted likelihood ratio tests

This table reports the results from the weighted likelihood ratio (WLR) tests developed
by Giacomini and White (2006) and Amisano and Giacomini (2007). This test is used
to compare the significance of the difference between two competing density forecasts.
The one-sided test examines whether the predictive performance of forecast scheme A is
significantly better than that of forecast scheme B. The out-of-sample density forecasts
are constructed from the single best model and three types of model pools, namely,
the model pool with full set of models (model pooling), the model pool with trimmed
model set using MCS trimming (MCS Best Model Set) and the optimal fixed trimming
(Optimal trimming). We use an unweighted version of the WLR test to avoid imposing
prior knowledge on the choice of a particular weighting function. The table reports results
for two distinct sets of test assets, namely, the 30 value-weighted industry portfolios and
the standard Fama-French 25 size and B/M portfolios. Panel A assumes no distributional
accuracy preferences, and Panels B to D assume that the investor respectively weights
the central part, the left tail and the right tail of the asset return distribution as more
important.

HA : E(WLRA,B) > 0

Panel A: Equal
30 industry portfolios
Scheme A/Scheme B Best Individual Model MCS Best Model Set (best) Model Pooling (best)

Optimal trimming (best) 12.4362(0.0000) 8.3017(0.0000) 7.6399(0.0000)
Model Pooling (best) 10.6264(0.0000) 4.9946(0.0000)
MCS Best Model Set (best) 9.9717(0.0000)
25 size and B/M portfolios
Scheme A/Scheme B Best Individual Model Model Pooling (best) MCS Best Model Set (best)

Optimal trimming (best) 12.8618(0.0000) 30.9619(0.0000) 5.1933(0.0000)
MCS Best Model Set (best) 12.7717(0.0000) 15.1015(0.0000)
Model Pooling (best) 4.0709(0.0000)

Panel B: Central Tendency
30 industry portfolios
Scheme A/Scheme B Best Individual Model MCS Best Model Set (best) Model Pooling (best)

MCS Best Model Set (best) 1.4845(0.0691) 1.2470(0.1065) 0.6734(0.2505)
Optimal trimming (best) 0.8795(0.1898) 0.8250(0.2049)
Model Pooling (best) 0.7333(0.2318)
25 size and B/M portfolios
Scheme A/Scheme B Best Individual Model Model Pooling (best) Optimal trimming (best)

MCS Best Model Set (best) 0.8650(0.1937) 1.0276(0.1523) 0.9370(0.1746)
Optimal trimming (best) 0.0413(0.4835) 1.0573(0.1454)
Model Pooling (best) 0.6359(0.2625)

Table 8 continued on next page
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Table 8 continued

Panel C: Left Tail
30 industry portfolios
Scheme A/Scheme B Best Individual Model MCS Best Model Set (best) Model Pooling (best)

Optimal trimming (best) 12.1831(0.0000) 7.9329(0.0000) 7.5265(0.0000)
MCS Model Pooling (best) 10.0718(0.0000) 5.0433(0.0000)
Best Model Set (best) 10.4383(0.0000)
25 Size and B/M Portfolios
Scheme A/Scheme B Best Individual Model Model Pooling (best) MCS Best Model Set (best)

Optimal trimming (best) 12.8618(0.0000) 30.9619(0.0000) 5.1933(0.0000)
MCS Best Model Set (best) 12.7717(0.0000) 15.1015(0.0000)
Model Pooling (best) 4.0709(0.0000)

Panel D: Right Tail
30 industry portfolios
Scheme A/Scheme B Best Individual Model MCS Best Model Set (best) Model Pooling (best)

Optimal trimming (best) 12.1831(0.0000) 7.9329(0.0000) 7.5265(0.0000)
MCS Best Model Set (best) 10.0718(0.0000) 5.0433(0.0000)
Model Pooling (best) 10.4383(0.0000)
25 size and B/M portfolios
Scheme A/Scheme B Best Individual Model Model Pooling (best) MCS Best Model Set (best)

Optimal trimming (best) 11.9349(0.0000) 25.2746(0.0000) 5.0371(0.0000)
MCS Best Model Set (best) 11.7400(0.0000) 13.2077(0.0000)
Model Pooling (best) 3.8961(0.0000)
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Table 9: Forecast encompassing test

This table reports p-values for the Harvey, Leybourne, and Newbold (1998) MHLN statistic. The models included are listed in
AppendixA. Panel A presents results using the 30 value-weighted industry portfolios, while Panel B reports the results for the
standard Fama-French 25 size and B/M portfolios. The null hypothesis is that the forecast given in the row heading encompasses
the forecast given in the column heading against the alternative hypothesis that the forecast given in the column heading does
not encompass the forecast given in the row heading.

Panel A: 30 industry portfolios
CAPM(U) CCAPM(U) CRR5(U) Carhart4(U) FF3(U) FF5(U) JW(U) LIQ(U) CAPM(C) CCAPM(C) CRR5(C) Carhart4(C) FF3(C) FF5(C) JW(C) LIQ(C)

CAPM(U) 0.0000 0.0000 1.0000 1.0000 1.0000 0.7280 0.9971 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CCAPM(U) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9920 0.7303 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CRR5(U) 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.7344 0.2438 0.0800 0.6351 0.0806 0.0041
Carhart4(U) 0.0000 0.0000 0.0000 0.0386 0.9492 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FF3(U) 0.0000 0.0000 0.0000 0.9614 0.9998 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FF5(U) 0.0000 0.0000 0.0000 0.0508 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JW(U) 0.2720 0.0000 0.0000 1.0000 1.0000 1.0000 0.8466 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LIQ(U) 0.0029 0.0000 0.0000 1.0000 1.0000 1.0000 0.1534 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CAPM(C) 1.0000 0.0080 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0055 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CCAPM(C) 1.0000 0.2697 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9945 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CRR5(C) 1.0000 0.0000 0.2656 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0005 0.0001 0.2713 0.0007 0.0000
Carhart4(C) 1.0000 0.0000 0.7562 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.9995 0.0541 0.9880 0.1544 0.0020
FF3(C) 1.0000 0.0000 0.9200 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.9999 0.9459 0.9985 0.5554 0.0085
FF5(C) 1.0000 0.0000 0.3649 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.7287 0.0120 0.0015 0.0073 0.0000
JW(C) 1.0000 0.0000 0.9194 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.9993 0.8456 0.4446 0.9927 0.0126
LIQ(C) 1.0000 0.0000 0.9959 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 0.9980 0.9915 1.0000 0.9874

Panel B: 25 size and B/M portfolios
CAPM(U) CCAPM(U) CRR5(U) Carhart4(U) FF3(U) FF5(U) JW(U) LIQ(U) CAPM(C) CCAPM(C) CRR5(C) Carhart4(C) FF3(C) FF5(C) JW(C) LIQ(C)

CAPM(U) 0.0000 0.0000 1.0000 1.0000 1.0000 0.2858 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CCAPM(U) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9956 0.4725 0.9998 1.0000 0.9999 1.0000 0.9619 0.9990
CRR5(U) 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0002 0.0000 0.1081 0.1661 0.0269 0.2663 0.0004 0.0020
Carhart4(U) 0.0000 0.0000 0.0000 0.9820 0.2891 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FF3(U) 0.0000 0.0000 0.0000 0.0180 0.0534 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FF5(U) 0.0000 0.0000 0.0000 0.7109 0.9466 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
JW(U) 0.7142 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
LIQ(U) 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CAPM(C) 1.0000 0.0044 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 0.0004 0.9943 0.9999 0.9975 0.9998 0.4905 0.9469
CCAPM(C) 1.0000 0.5275 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 0.9891 1.0000
CRR5(C) 1.0000 0.0002 0.8919 1.0000 1.0000 1.0000 1.0000 1.0000 0.0057 0.0000 0.7984 0.1947 0.9117 0.0004 0.0241
Carhart4(C) 1.0000 0.0000 0.8339 1.0000 1.0000 1.0000 1.0000 1.0000 0.0001 0.0000 0.2016 0.0112 0.7329 0.0000 0.0012
FF3(C) 1.0000 0.0001 0.9731 1.0000 1.0000 1.0000 1.0000 1.0000 0.0025 0.0000 0.8053 0.9888 0.9775 0.0002 0.0389
FF5(C) 1.0000 0.0000 0.7337 1.0000 1.0000 1.0000 1.0000 1.0000 0.0002 0.0000 0.0883 0.2671 0.0225 0.0000 0.0018
JW(C) 1.0000 0.0381 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 0.5095 0.0109 0.9996 1.0000 0.9998 1.0000 0.8931
LIQ(C) 1.0000 0.0010 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000 0.0531 0.0000 0.9759 0.9988 0.9611 0.9982 0.1069
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Table 10: Economic implication: asset allocation without transaction cost

The table compares the out-of-sample performance of alternative methods in addressing asset pricing model uncertainty in terms
of monthly certainty equivalent rates of return (CERs) expressed as a percentage and Sharpe ratio (Sharpe) for mean-variance
optimal investment strategies. The asset allocation practice uses the moments of stock return predictive distributions implied
by each of the forecasting schemes to choose an optimal optimal portfolio allocation from 1978 to 2011 using three different
window schemes: the full sample, rolling window and expanding window. The asset universe includes of T-bills and i) the 30
value-weighted industry portfolios or ii) the 25 size and book-to-market (B/M) portfolios. The results are presented for three
different levels of risk aversion: 2, 5 and 10. The forecasting scheme includes the single best model and three types of model pools,
namely, the model pool with full set of models (Pool), the model pool with trimmed model set using MCS trimming (MCS Best
Model Set) and the optimal fixed trimming (Optimal Trimmed). The EW and OptW in brackets represent pooling using equal
and optimal weights, respectively. This table assumes no transaction costs. The number in bold indicates the highest economic
gain in the column.

Risk aversion Forecasting schemes Full sample Rolling window Expanding window
30 25 30 25 30 25

CER Sharp CER Sharp CER Sharp CER Sharp CER Sharp CER Sharp
2 Single best model 1.7094 0.4592 2.0119 0.7461 0.9402 0.1809 0.8978 0.1744 0.9587 0.1850 0.9141 0.1806
2 Pool (EW) 2.0064 0.4385 2.4402 0.7003 0.9939 0.1838 0.9942 0.2046 0.9939 0.1838 0.9942 0.2046
2 Pool (OptW) 0.6894 0.1171 0.6720 0.1771 0.6894 0.1171 0.6720 0.1771 0.6894 0.1171 0.6720 0.1771
2 MCS Best model set (EW) 1.8493 0.6519 1.9872 0.7789 0.9011 0.1827 0.8675 0.1791 0.9134 0.1863 0.8909 0.1923
2 MCS Best model set (OptW) 1.8507 0.6772 1.9773 0.7945 0.8995 0.1809 0.8862 0.1811 0.9405 0.1954 0.8843 0.1892
2 Optimal trimmed (EW) 2.1574 0.5871 2.1139 0.7887 0.9520 0.1854 0.9627 0.2165 0.9141 0.1767 0.9145 0.1916
2 Optimal trimmed (OptW) 2.1263 0.6107 2.1949 0.7697 1.0163 0.2078 0.9166 0.1943 0.9734 0.1966 0.8923 0.1919
5 Single best model 1.5782 0.4592 1.9412 0.7461 0.7732 0.1809 0.7512 0.1744 0.7878 0.1850 0.7695 0.1806
5 Pool (EW) 1.7750 0.4385 2.3067 0.7003 0.7855 0.1838 0.8472 0.2046 0.7855 0.1838 0.8472 0.2046
5 Pool (OptW) 0.5821 0.1171 0.6451 0.1771 0.5821 0.1171 0.6451 0.1771 0.5821 0.1171 0.6451 0.1771
5 MCS Best model set (EW) 1.7738 0.6519 1.9248 0.7789 0.7708 0.1827 0.7541 0.1791 0.7820 0.1863 0.7855 0.1923
5 MCS Best model set (OptW) 1.7815 0.6772 1.9182 0.7945 0.7663 0.1809 0.7638 0.1811 0.8091 0.1954 0.7776 0.1892
5 Optimal trimmed (EW) 2.0146 0.5871 2.0421 0.7887 0.7886 0.1854 0.8538 0.2165 0.7587 0.1767 0.7937 0.1916
5 Optimal trimmed (OptW) 2.0014 0.6107 2.1120 0.7697 0.8608 0.2078 0.7998 0.1943 0.8220 0.1966 0.7858 0.1919
10 Single best model 1.3596 0.4592 1.8233 0.7461 0.4950 0.1809 0.5068 0.1744 0.5031 0.1850 0.5287 0.1806
10 Pool (EW) 0.4383 0.1838 2.0841 0.7003 1.3894 0.4385 0.6022 0.2046 0.4383 0.1838 0.6022 0.2046
10 Pool (OptW) 0.4031 0.1171 0.6004 0.1771 0.4031 0.1171 0.6004 0.1771 0.4031 0.1171 0.6004 0.1771
10 MCS Best model set (EW) 1.6479 0.6519 1.8206 0.7789 0.5535 0.1827 0.5650 0.1791 0.5630 0.1863 0.6099 0.1923
10 MCS Best model set (OptW) 1.6662 0.6772 1.8196 0.7945 0.5443 0.1809 0.5598 0.1811 0.5901 0.1954 0.5998 0.1892
10 Optimal trimmed (EW) 1.7766 0.5871 1.9225 0.7887 0.5164 0.1854 0.6723 0.2165 0.4996 0.1767 0.5925 0.1916
10 Optimal trimmed (OptW) 1.7933 0.6107 1.9736 0.7697 0.6017 0.2078 0.6051 0.1943 0.5697 0.1966 0.6082 0.1919
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Table 11: Economic implication: asset allocation with transaction cost

The table compares the out-of-sample performance of alternative methods in addressing asset pricing model uncertainty in terms
of monthly certainty equivalent rates of return (CERs) expressed as a percentage and the Sharpe ratio (Sharpe) for mean-variance
optimal investment strategies. The asset allocation practice uses the moments of stock return predictive distributions implied
by each of the forecasting schemes to choose an optimal optimal portfolio allocation during 1978 to 2011 using three different
window schemes: the full sample, rolling window and expanding window. The asset universe includes of T-bills and i) the 30
value-weighted industry portfolios or ii) the 25 size and book-to-market (B/M) portfolios. The results are presented for three
different levels of risk aversion: 2, 5 and 10. The forecasting scheme includes the single best model and three types of model pool,
namely, the model pool with full set of models (Pool), the model pool with trimmed model set using MCS trimming (MCS Best
Model Set) and the optimal fixed trimming (Optimal Trimmed). The EW and OptW in brackets represent pooling using equal
and optimal weights, respectively. This table assumes transaction costs of 50 bp per round trip. The number in bold indicates
the highest economic gain in the column.

Risk aversion Risk aversion Forecasting Schemes Full Sample Rolling Window Expanding window
30 25 30 25 30 25

CER Sharp CER Sharp CER Sharp CER Sharp CER Sharp CER Sharp
2 2 Single best model 2.1265 0.4817 2.2385 0.7202 1.1194 0.2156 0.9651 0.1921 1.0923 0.2064 0.9116 0.1773
2 2 Pool (EW) 2.1453 0.5184 2.4470 0.7139 1.0738 0.2163 1.0759 0.2501 1.0738 0.2163 1.0759 0.2501
2 2 Pool (OptW) 0.6492 0.1347 0.6227 0.1772 0.6492 0.1347 0.6227 0.1772 0.6492 0.1347 0.6227 0.1772
2 2 MCS Best model set (EW) 1.8801 0.7173 2.0451 0.7505 0.8418 0.1678 0.9340 0.2073 0.8799 0.1769 0.9296 0.1984
2 2 MCS Best model set (OptW) 1.8679 0.6715 1.9755 0.7572 0.8310 0.1592 0.8475 0.1750 0.9012 0.1887 0.9072 0.2024
2 2 Optimal trimmed (EW) 2.1152 0.6202 2.0279 0.7477 1.0236 0.2102 0.8878 0.1892 0.9389 0.1812 0.8830 0.1849
2 2 Optimal trimmed (OptW) 2.1706 0.6352 2.1356 0.7644 0.9721 0.1914 0.9349 0.2086 0.9741 0.1960 0.9759 0.2171
5 5 Single best model 1.9109 0.4817 2.1379 0.7202 0.9067 0.2156 0.8104 0.1921 0.8728 0.2064 0.7610 0.1773
5 5 Pool (EW) 1.9589 0.5184 2.3183 0.7139 0.8976 0.2163 0.9576 0.2501 0.8976 0.2163 0.9576 0.2501
5 5 Pool (OptW) 0.6056 0.1347 0.6070 0.1772 0.6056 0.1347 0.6070 0.1772 0.6056 0.1347 0.6070 0.1772
5 5 MCS Best model set (EW) 1.8156 0.7173 1.9725 0.7505 0.7228 0.1678 0.8275 0.2073 0.7520 0.1769 0.8112 0.1984
5 5 MCS Best model set (OptW) 1.7952 0.6715 1.9102 0.7572 0.7003 0.1592 0.7402 0.1750 0.7831 0.1887 0.8076 0.2024
5 5 Optimal trimmed (EW) 1.9959 0.6202 1.9555 0.7477 0.8676 0.2102 0.7787 0.1892 0.7752 0.1812 0.7699 0.1849
5 5 Optimal trimmed (OptW) 2.0486 0.6352 2.0576 0.7644 0.8094 0.1914 0.8297 0.2086 0.8203 0.1960 0.8617 0.2171
10 10 Single best model 1.5515 0.4817 1.9703 0.7202 0.5522 0.2156 0.5526 0.1921 0.5069 0.2064 0.5101 0.1773
10 10 Pool (EW) 1.6483 0.5184 2.1038 0.7139 0.6040 0.2163 0.7604 0.2501 0.6040 0.2163 0.7604 0.2501
10 10 Pool (OptW) 0.5329 0.1347 0.5807 0.1772 0.5329 0.1347 0.5807 0.1772 0.5329 0.1347 0.5807 0.1772
10 10 MCS Best model set (EW) 1.7082 0.7173 1.8515 0.7505 0.5243 0.1678 0.6499 0.2073 0.5389 0.1769 0.6140 0.1984
10 10 MCS Best model set (OptW) 1.6740 0.6715 1.8014 0.7572 0.4824 0.1592 0.5614 0.1750 0.5863 0.1887 0.6416 0.2024
10 10 Optimal trimmed (EW) 1.7970 0.6202 1.8350 0.7477 0.6076 0.2102 0.5969 0.1892 0.5024 0.1812 0.5812 0.1849
10 10 Optimal trimmed (OptW) 1.8453 0.6352 1.9275 0.7644 0.5382 0.1914 0.6544 0.2086 0.5638 0.1960 0.6715 0.2171
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Table 12: Robustness check: choice of sample split point

This table checks the robustness of the main empirical results to an alternative sample
splitting point for the estimation and testing period. The table uses two different splitting
points, year 10 and 25. That is, the model parameters are estimated using 10-year and
25-year rolling windows, and the forecasts are evaluated throughout the remainder of
the sample periods. The table reports the log predictive score (LPSs) of the different
forecasting schemes in addressing asset pricing model uncertainty. The calculation of
LPSs assumes that the investor weights the accuracy of different regions of the asset
return distribution as equally important. The forecasting scheme includes the single best
model and three types of model pooling, namely, the model pool with full set of models
(Pool), the model pool with a trimmed model set using MCS trimming (MCS Best Model
Set) and the optimal fixed trimming (Optimal Trimmed). The EW and OptW in brackets
represent pooling using equal and optimal weights, respectively. The table reports results
for two distinct sets of test assets, namely, the 30 value-weighted industry portfolios and
the standard Fama-French 25 size and B/M portfolios. The number in bold indicates the
largest LPS in the column.

30 industry portfolios 25 size and B/M portfolios
10 year 25 year 10 year 25 year

Single Best Model -2578.449398 -2635.156236 1892.99653 4141.325
Pool (EW) -2284.950213 -2180.101146 2176.15248 4594.215
Pool (OptW) -2284.943707 -2180.099994 2505.58997 7219.102
MCS Best Model Set (EW) -2284.950213 -2180.101146 2176.15248 4594.215
MCS Best Model Set (OptW) -3806.520754 -4603.724938 1260.05353 2720.211
Optimal Trimmed (EW) -2281.2669 -2179.537854 2178.04098 4593.524
Optimal Trimmed (OptW) -2281.2669 -2179.534645 2178.04098 4593.524
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Table 13: Robustness check: comparison of subsample periods

This table checks the robustness of the main empirical results to alternative subperiods
as indicated in the column headings. The table reports the log predictive score (LPSs) of
the different forecasting schemes in addressing the asset pricing model uncertainty. The
calculation of LPSs assumes that the investor weights the accuracy of different regions
of the asset return distribution as equally important. The forecasting scheme includes
the single best model and three types of model pooling, namely, the model pool with
full set of models (Pool), the model pool with trimmed model set using MCS trimming
(MCS Best Model Set) and the optimal fixed trimming (Optimal Trimmed). The EW
and OptW in brackets represent pooling using equal and optimal weights, respectively.
Note the model weights are estimated using full-sample. The table reports results for
two distinct sets of test assets, namely, the 30 value-weighted industry portfolios and the
standard Fama-French 25 size and B/M portfolios in Panels A and B, respectively. The
number in bold indicates the largest LPS in the column.

Panel A: 30 industry portfolios
1968-1978 1978-1988 1988-1998 1998-2008 2008-2011

Single Best Model -12059.1693 -13278.6696 -12749.5271 -15163.6930 -5555.4678
Pool (EW) -11904.9089 -12998.5043 -12585.1510 -14932.6278 -5361.0603
Pool (OptW) -12329.5161 -13327.8654 -13156.0768 -15397.1549 -5504.4502
MCS Best Model Set (EW) -11896.6035 -12958.1280 -12601.0490 -14912.9995 -5371.3520
MCS Best Model Set (OptW) -11896.4786 -12958.0168 -12600.8625 -14912.8555 -5371.2760
Optimal Trimmed (EW) -11785.6696 -12759.2564 -12583.3755 -14824.5931 -5296.2185
Optimal Trimmed (OptW) -11785.6696 -12759.2564 -12583.3755 -14824.5931 -5296.2185
Panel B: 25 size and B/M portfolios
Single Best Model -6358.7551 -5903.7816 -5805.9099 -7583.9382 -2685.2976
Pool (EW) -6339.1034 -5820.0233 -5798.6785 -7509.3770 -2673.4239
Pool (OptW) -6825.6857 -6382.8183 -6297.3039 -7995.6190 -2842.3158
MCS Best Model Set (EW) -6197.6157 -5718.6465 -5633.4668 -7335.6573 -2601.6377
MCS Best Model Set (OptW) -6197.6595 -5718.6894 -5633.5409 -7335.7466 -2601.6731
Optimal Trimmed (EW) -6310.9963 -5844.8815 -5755.5758 -7454.5168 -2645.2835
Optimal Trimmed (OptW) -6310.9963 -5844.8815 -5755.5758 -7454.5168 -2645.2835
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Panel A: 30 industry portfolios
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Panel B: 25 size and B/M portfolios
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Figure 1: Comparison of individual asset pricing models: based on the Model Confidence
Set (MCS) test

This figure compares and evaluates 120 asset pricing models using the MCS test developed
by Hansen, Lunde, and Nason (2011). The models included are listed in AppendixA.
For a given model, the WLPS is computed from predictive densities based on equation
(3.11) using the full sample. The figure contains two panels illustrating the results using
30 value-weighted industry portfolios and the standard Fama-French 25 size and B/M
portfolios, respectively. Each panel includes four subfigures that represent four different
distributional accuracy preferences, namely, equal weighting, central tendency accuracy
preference, and left and right tail preferences. The p-value of the MCS test for model
comparison is computed at a significance level of 0.1%. The dots in the figure denote the
individual asset pricing models. The horizontal line denotes the threshold value. The
dots above the line represent the models selected into the model confidence set.
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Panel A: 30 industry portfolios
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Panel B: 25 size and B/M portfolios

Figure 2: Time-varying number of selected models in the best forecasting scheme

This figure plots the number of models selected by the optimal trimming method over
the testing period from 1978 to 2011. The forecast is based on a rolling window with 120
monthly observations. The 120 models considered are listed in AppendixA. The figure
contains two panels illustrating the results using 30 value-weighted industry portfolios
and the standard Fama-French 25 size and B/M portfolios, respectively. The thin solid,
thick solid, dash, and dotted dash lines represent the four different distributional accuracy
preferences: equal weighting, central tendency accuracy preference, and left and right tail
preferences, respectively.
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Figure 3: Sensitivity to the trimming percentage

This figure displays the log predictive score when the trimming percentage in the optimal trimming scheme varies from 0.1% to
99.9%, and the significance level in the Model Confidence Set (MSC) test (Hansen, Lunde, and Nason, 2011) ranges from 0.1%
to 99.9% based on the full sample. The full set of 120 models considered is listed in AppendixA. The figure contains two panels
illustrating the results using 30 value-weighted industry portfolios and the standard Fama-French 25 size and B/M portfolios,
respectively.

73



Figure 4: Differences in log predictive scores

This figure shows the difference in log predictive scores for the optimal trimming scheme and the best individual model/full model
pooling. The full set of 120 individual asset pricing models considered is listed in AppendixA. The figure contains two panels
illustrating the results using 30 value-weighted industry portfolios and the standard Fama-French 25 size and B/M portfolios,
respectively. The top subfigure of each panel shows the difference between the optimal trimming and the best individual model,
and the bottom subfigure of each panel shows the difference between the optimal trimming and the best model set constructed
based on the Model Confidence Set (MSC) test (Hansen, Lunde, and Nason, 2011). The shaded areas indicate recession periods
as defined by NBER.
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